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ABSTRACT

Accurate subject-to-template alignment requires deformation mod-
els with high degrees of freedom to account for the high anatomi-
cal variability. Without proper regularization, such models tend to
match the images aggressively, often producing unrealistic transfor-
mations, especially in the presence of noise, or pathologies such as
various types of lesions. To improve the robustness of deformable
registration, we propose a novel framework, which makes use of
statistical deformation models (SDMs) for diffeomorphisms. We
present a general approach to constructing such SDMs, and detail
how to use them for regularizing a given transformation. To pre-
serve the diffeomorphic property, while making use of linear statis-
tical models, we convert the deformation field into a stationary ve-
locity field through the logarithm operator. To account for learning
in a high-dimensional, low-sample size setting, we model the high-
dimensional velocity field as a collection of mutually constrained
local velocity fields. For each local field, a low-dimensional rep-
resentation is learned using principal component analysis. To cap-
ture possible dependencies across local transformations, canonical
correlation analysis is performed on each pair of local velocities in
the learned low-dimensional space. Experiments on healthy brain
images show that the model can capture the normative variation of
subject-to-template deformation fields with sub-millimeter accuracy.
The method is validated on simulated brain lesion images and is
tested on real brain images with pathologies, producing significantly
smoother and more robust results than its non-statistical counterpart.

Index Terms— Statistical deformation models, image registra-
tion, statistical learning

1. INTRODUCTION

Spatial alignment of different subjects to a common template is
widely used to delineate group differences or spatial patterns of
correlation with clinical variables. The success of these studies
depends greatly on establishing accurate correspondences between
the different anatomies and the template [1]. To account for the high
anatomical variability, a large number of degrees of freedom (DOF)
are required in a general-purpose registration method to produce
accurate subject-to-template mapping. However, such a deformable
registration is challenged by the high dimensionality of the search
space, as well as by the presence of noise, image artifacts, or pathol-
ogy, which may result in aggressive and unrealistic transformations,
since the pathologies are not part of the normative templates.

To address the above limitations, statistical deformation models
(SDMs) have been proposed to learn the normal anatomical variabil-
ity within the population of interest from a set of exemplary defor-
mations. The resulting SDM is used to constrain the estimated defor-
mation to lie within the subspace of learned deformations, thus en-
dowing registration with increased robustness to noise, artifacts, and

pathologies, such as lesions. Importantly, representing the transfor-
mations through a compact SDM drastically reduces the number of
DOF and may accelerate the registration task. A major challenge in
training SDMs is the high dimensionality of the deformation fields
compared to the limited sample size. To tackle the dimensionality
challenge, a cubic B-spline Free Form Deformation model is typ-
ically employed to parametrize the transformations, and principal
component analysis (PCA) is used to learn the control point displace-
ments [2, 3]. To further reduce the dimensionality of the problem,
Glocker et al. [4] proposed to cluster the densely sampled control
points into several local parts with similar behavior, while Xue et al.
[5] used wavelet-based decompositions coupled with PCA in each
wavelet band.

However, despite the importance of diffeomorphisms for com-
putational anatomy, previous studies have largely overlooked them
when learning an SDM. Only a few studies have considered SDMs
that preserve the diffeomorphic property. Qiu et al. [6] used PCA
in the space of initial momentum under the large deformation dif-
feomorphic metric mapping (LDMM). Since the momentum has the
same dimensionality as the deformation fields, the method is lim-
ited by the inability of PCA to estimate high-dimensional covariance
structures given limited training samples [7]. In a similar approach,
Zhang et al. used global PCA coupled with a low-frequency Fourier-
based representation of the LDDMM velocity field [8] to analyze
anatomical variations. However, this approach has not been used for
image registration, while its ability to cope with complex local vari-
ability is limited by the global nature of the statistical model and the
band-limited representation.

We present here an approach to learning an SDM for diffeomor-
phisms, which can account for the high dimensionality of the prob-
lem, while also effectively modeling local variations. To account for
the fact that the group of diffeomorphisms is not a linear space [9],
we adopt the Log-Euclidean framework [9] and parametrize diffeo-
morphism by its principal logarithm. The log-domain parametriza-
tion allows us to perform vectorial statistics while satisfying the in-
vertibility constraint. To tackle the dimensionality challenge, we
treat a dense velocity field as a collection of local velocity fields.
Each local velocity field is embedded in a much lower-dimensional
space than its global counterpart, allowing PCA to model the vari-
ability of each local velocity field using a limited number of ob-
servations. To capture possible dependencies across local transfor-
mations and thus preserve the global structure of the velocity field,
canonical correlation analysis (CCA) is performed to learn the re-
lation between pairs of local velocity fields. Experimental results
indicate that the proposed model can capture the normative variation
of subject-to-template deformation fields with sub-millimeter accu-
racy. We also report promising results when validating the method
on image data with synthetic and real lesions. To the best of our
knowledge, this is the first attempt to capture diffeomorphisms in
an SDM, while also demonstrating its potential advantage over non-



statistical methods in registering lesion-bearing images.

2. METHOD

Let us consider a common template T and a set of training images
M = {I1, I2, . . . , IN}. Let us also assume that the set of cor-
responding diffeomorphisms {D1,D2, . . . ,DN} that mapM to T
is known. Each diffeomorphism Di is converted into a stationary
velocity field (SVF) Vi by taking its principal logarithm [9]. Work-
ing in the logarithm domain has the advantage that the invertibility
property can be preserved by linear statistical methods.

To address the dimensionality challenge, each SVF Vi is subse-
quently represented by a collection of local velocity fields. Each lo-
cal velocity field corresponds to a sub-block of Vi, centered at a can-
didate location. Specifically, if the block size is set to px × py × pz
in the 3D case, then the local velocity filed will be an element in
Rpx×py×pz×3. We use S to represent the set of all candidate block
centers. The set of training blocks centered at s ∈ S is denoted by
Vs := {vs,1,vs,2, . . . ,vs,N}.

2.1. Learning local velocity fields

Principal component analysis is used to capture the variation within
local velocity fields. For each candidate location s, we denote by v̄s

the sample mean, and by Qs the sample covariance of the vectorized
training set Vs ⊂ Rps . The approximate eigen-decomposition of
Qs may be written as

Qs ≈ UsΛsUs
T ,

where Us ∈ Rps×ks (Λs ∈ Rks×ks ) is the truncated eigenvec-
tor (eigenvalue) matrix so that 95% of the variation in Vs is pre-
served in {Us

Tvs,1, . . . ,Us
Tvs,N}.

Given Us and Λs, the local velocity field may be parametrized
by a coefficient βs = [β1

s , β
2
s , . . . , β

ks
s ] ∈ Rks :

vs = v̄s + Usβs such that |βi
s| ≤ c

√
Λi,i

s ,

where c controls the admissible range of each βi
s. For example, set-

ting c = 3 allows βi
s to be any value less than three standard devia-

tions away from the mean.

2.2. Learning correlation across local velocity fields

The above PCA model is only capable of capturing local variations
within each block. To preserve the global structure of the velocity
field, we carry out a canonical correlation analysis [10] to link each
pair of local fields.

Let us consider two different block centers s1 and s2. The
objective is to learn, using CCA, potential correlations between
velocity field blocks centered at s1 and s2. Given two vec-
tors X = (x1, . . . , xn) and Y = (y1, . . . , ym), CCA will find
the linear combinations of the xi and yj that have the maxi-
mum correlation with each other. To take advantage of the low-
dimensional parametrization learned in Sec. 2.1, we perform CCA
on the coefficients {βs1,1, . . . ,βs1,N} and {βs2,1, . . . ,βs2,N},
rather than on the raw samples Vs1 and Vs2 . If we keep the
first ds1,s2 pairs of canonical variables, with canonical weights
As1,s2 ∈ Rks1

×ds1,s2 , Bs1,s2 ∈ Rks2
×ds1,s2 and canonical

correlation ρs1,s2 = [ρ1s1,s2 , . . . , ρ
ds1,s2
s1,s2 ] ∈ Rds1,s2 , then the

cross-covariance matrix between As1,s2βs1 and Bs1,s2βs2 is a
diagonal matrix with ρ1s1,s2 , . . . , ρ

ds1,s2
s1,s2 on the main diagonal.

2.3. The statistical deformation model

We now present the complete statistical model for a dense velocity
field D. Since D is parametrized by its logarithm V , and V is con-
sidered as an ensemble of local blocks {vs, s ∈ S}, one only needs
to specify the distribution of the local blocks, or more compactly, the
distribution of the coefficients {βs, s ∈ S}. Here, we propose the
following joint probability density function for the coefficients,

p(βs, s ∈ S) ∝
∏
s∈S

f(βs)
∏

s1,s2∈S,s1 6=s2

g(βs1 ,βs2 |λ).

The unary term f(βs) is a product of indicator functions

f(βs) =
∏

i=1,...,ks

1(|βi
s| ≤ c

√
Λi,i

s ),

which constrain each element in βs to be within c standard variations
from the mean.

The interaction potential g(βs1 ,βs2 |λ) is defined as

g(βs1 ,βs2 |λ) = exp(−λβT
s1AT

s1,s2Γs1,s2Bs1,s2βs2),

where λ > 0 is a hyperparameter that controls the weight of the
interaction potential, and Γs1,s2 is a ds1,s2 × ds1,s2 diagonal ma-
trix with ρds1,s2/(1− (ρds1,s2)2) on the main diagonal. The interac-
tion term penalizes configurations of βs1 ,βs2 that deviate from the
learned linear correlation.

Given a new observation V = logD, the most likely underlying
coefficient may be recovered as the maximum a posteriori probabil-
ity (MAP) estimate

β̃s = arg max
βs

p(V|βs, s ∈ S)p(βs, s ∈ S),

where the conditional likelihood p(V|βs, s ∈ S) has the form

p(V|βs, s ∈ S) ∝
∏
s∈S

exp(−‖vs − (v̄s + Usβs)‖22).

Let Ṽ be the velocity field generated by β̃s and let D̃ = exp(Ṽ).
We denote by P the mapping from V(D) to Ṽ(D̃). The function P
may be interpreted as a regularization operator that projects V(D)
onto the admissible subspace learned by the statistical model. Using
P (D) instead ofD has the potential to improve the robustness of the
registration results with little sacrifice on accuracy.

3. EXPERIMENTAL RESULTS

We used a dataset comprising 380 brain MR images (T1) from
healthy adults aged between 45 and 55 to learn the SDM. The pro-
cedure proposed in [11] was used to create an unbiased template T
from 20 randomly selected volumes that are part of the normative
dataset. T was used as the reference space across the experiments.
We used Log-Demons [12], which is a diffeomorphic registration
method, to perform pair-wise registration between the reference
image and each subject image. To study the performance of the
method on lesion-bearing images, the second dataset of 28 T1 vol-
umes showing stroke lesions was also used. Skull stripping and bias
correction were performed for all volumes.



Fig. 1. Box plots showing the RMSD between D and D̃. In the left
panel λ was set to 0, while c ranged in 1, 2, 3. In the right panel, c
was fixed at c = 2, while λ took value in 1, 10, 20, 50.

3.1. Experiments using the normative dataset

In the first experiment, we demonstrate the capability of the method
to capture shape variations within the normative database. The pa-
rameter setting is detailed in what follows. The size of the local
blocks was set to 16 mm isotropic, and the distance between block
centers was set to 12 mm. Out of the 380 deformation field samples
generated by Log-Demons, 200 samples were used for computing
the PCA basis, 150 samples were used to learn the canonical corre-
lations, and the other 30 samples were reserved for testing. To make
the computation tractable, only canonical correlation pairs with cor-
relation higher than 0.8 were used to define the interaction potential.

With a fixed λ = 0, we varied the parameter c to examine its
influence on the representation ability of the model, which was mea-
sured by the root-mean-square difference (RMSD) between D and
D̃ for the 30 test samples. The results for c ∈ 1, 2, 3 are summa-
rized by the plots in the left panel of Fig. 1. With a widely used
value c = 2, the method was able to represent left-out samples in the
normative database with sub-millimeter accuracy.

We also studied the role of the regularization parameter λ on the
representation ability with a fixed c = 2. RMSD was again used as
the quantitative measure. Results for λ ∈ 1, 10, 20, 50 are shown in
the right panel of Fig. 1. The RMSD increases with increasing λ, a
behavior that was expected as the DOF of the representation reduces
with larger λ, resulting in a larger model bias. It is, however, worth
noting that even with a fairly large λ (λ = 50), the discrepancy
between D and D̃ is still relatively small (median RMSD is below
1 mm). This suggests that the learned correlation-based regulariza-
tion generalizes well to unseen samples.

3.2. Experiments using simulated lesions

We next evaluated the robustness of the proposed framework in the
presence of simulated lesions. 10 annotated T1 images that contain a
variety of lesions (necrosis, white matter lesions, tumors, etc.) were
used as the base for the simulation. A base image B was used to
plant lesions on a target image I according to the following proce-
dure. We used a near-affine transformation to coarsely align B and
its manual annotations to I while preserving the shape of the lesion.
Given the aligned lesion maskM, we fused the two images by re-
placing the intensity values of the voxels in I that are withinMwith
the values of the corresponding voxels in B. Gaussian smoothing
was performed near the boundary ofM to eliminate image artifacts
caused by the fusion process. We denote by I′ the simulated image.
15 random selections from the testing set in Sec. 3.1 were used as the
target volume I, resulting in a total number of 150 simulated images

Fig. 2. Box plots summarizing the robustness measures under the
simulated setting. From left to right: RMSD between D (before
lesion simulation) and D′ (after lesion simulation) inside the sim-
ulated lesion region, RMSD between D and D′ in the non-lesion
region, Dice coefficients betweenM◦D andM◦D′.

(see characteristic examples in the second row, left panel of Fig. 3).

The simulation setting allows us to examine how the registra-
tion results change after the lesions are introduced. Assuming Log-
Demons returnsD (orD′) when warping I (or I′) to the template T ,
we evaluated the difference between D and D′, along with the dif-
ference between P (D) and P (D′). We used the same block size and
stride length values as in Sec. 3.1, and set c = 2. Two values for the
parameter λ were considered, namely λ ∈ 1, 20. In what follows,
we use the abbreviation LD, Spec1 and Spec2 for Log-Demons, pro-
jected Log-Demons with λ = 1 and λ = 20, respectively. For
brevity we omit the operator P and denote by D and D′ the defor-
mation fields generated before and after lesion simulation regardless
of the method. D and D′ were compared using the following met-
rics: the RMSD between D and D′, and the Dice overlap coefficient
between the warped lesion regionsM◦D andM◦D′.

The box plots in the left two panels of Fig. 2 summarize the dis-
tribution of the RMSD between D and D′, with the RMSD inside
the lesion shown on the left, and the RMSD away from the lesion
shown in the middle. Spec1 and Spec2 were more robust than LD
under both scenarios, with a more notable difference inside the lesion
region. The box plot in the right panel shows the Dice overlap coef-
ficients betweenM◦D andM◦D′ obtained by the three methods.
Again Spec1 and Spec2 outperformed LD, achieving significantly
higher Dice scores. It is also interesting to note that Spec2 performed
consistently more robust than Spec1. This is because the employed
larger regularization weight reduces model variance. However, this
comes at the cost of worse representation errors within normative
regions, as the results in Sec. 3.1 suggest. In short, the parameter λ
needs to be adjusted on a per-application basis to achieve the desired
balance between model fidelity and model robustness.

We conclude the simulation study with a discussion on the rep-
resentative image slices shown in the left panel of Fig. 3. In all
cases, LD produced aggressive deformations to “eliminate” the le-
sions, resulting in registration results that do not look physically
plausible. On the contrary, results produced by Spec1 and Spec2
suggest that such behavior is effectively prevented by the statisti-
cal constraints without compromising the registration quality away
from the lesions. Spec1 and Spec2 produced much smoother defor-
mations around the lesions, while still being able to accurately align
brain structures elsewhere.



Fig. 3. Representative slices of the registered images. The left panel contains examples from the simulation study, while the right panel
contains examples from the clinical study. From top to bottom: template image, affinely aligned subject image, subject image aligned using
LD, subject image aligned using Spec1, and subject image aligned using Spec2. The lesion regions that have been aggressively contracted by
LD are highlighted by the yellow circle. Note, in particular, the much more natural behavior of the proposed method in these regions.

3.3. Experiments using clinical lesion-bearing data

In this last experiment, we studied the behavior of D and D̃ on
lesion-bearing images, using real clinical images. In contrast to
the simulation setting, we do not have access to the subject’s image
had he/she been spared by the disease. Therefore, the ”before” vs.
”after” comparison is no longer feasible. Instead, we quantitatively
evaluated the performance of the different approaches to measuring
the lesion volume change before and after registration, as well as the
transformation smoothness. Visual inspection of the registration re-
sults was also performed. The same parameter setting as in Sec. 3.2
was employed.

Fig. 4 summarizes the quantitative comparison between the
different methods. The box plot in the left panel shows how the
harmonic energy (HE) is distributed for each method. The HEs
of the LD deformation fields are significantly higher than those of
Spec1 and Spec2. The distribution of the extreme Jacobian deter-
minant (JD) values for each method is shown in the middle panel in
Fig. 4. Specifically, absolute log JD values that belong to the top 5
percentile in each volume are summarized in the box plot. The trend
is similar to that of the HEs, with LD averaging the highest among
the three methods. It is worth noting that LD produces JD values as
high as e3 ≈ 20.09, while the other two methods do not produce
JD values higher than e1.5 ≈ 4.48. We quantified the lesion volume
change after the deformable registration by calculating the logarithm
of the change ratio log( Lesion Volume After

Lesion Volume Before ). The distribution of the met-
ric for each method is presented in the right panel of Fig. 4. One
may again observe LD’s problematic behavior since its usage leads
to unrealistic lesion volume reduction. This problematic behavior is
showcased in the representative results shown in the right panel of
Fig. 3. LD maximized image similarity by unrealistically contract-
ing the brain lesion. Contrarily, Spec1 and Spec2 achieved good
correspondences in the normative areas, without being influenced

Fig. 4. Boxplots outlining the performance of the three methods on
the clinical data. From left to right: harmonic energy of the deforma-
tion fields, extreme log Jacobican determinant values and log lesion
volume change ratio.

by the presence of lesions.

4. CONCLUSION

We introduced a novel registration approach based on a statistical
deformation model of diffeomorphisms. The proposed approach
leverages the Log-Euclidean framework to preserve diffeomorphism
when performing vectorial statistics. Importantly, it employs PCA
to effectively learn local statistical models in the high-dimensional,
low-sample setting. We additionally used CCA to learn the depen-
dencies between pairs of local velocity fields to ensure that the global
structure of the velocity field is preserved. Promising results suggest
that the proposed statistical registration method is more robust than
its non-statistical counterpart in the presence of abnormalities.
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