
Graph-based Deformable Image Registration

Aristeidis Sotiras∗, Yangming Ou∗, Nikos Paragios and Christos Davatzikos

Abstract Deformable image registration is a field that has received considerable at-
tention in the medical image analysis community. As a consequence, there is an im-
portant body of works that aims to tackle deformable registration. In this chapter we
review one class of these techniques that use discrete optimization, and more specif-
ically Markov Random Field models. We begin the chapter by explaining how one
can formulate the deformable registration problem as a minimal cost graph problem
where the nodes of the graph corresponds to the deformation grid, the graph connec-
tivity encodes regularization constraints, and the labels correspond to 3D displace-
ments. We then explain the use of discrete models in intensity-based volumetric
registration. In the third section, we detail the use of Gabor-based attribute vectors
in the context of discrete deformable registration, demonstrating the versatility of
the graph-based models. In the last section of the chapter, the case of landmark-
based registration is discussed. We first explain the discrete graphical model behind
establishing landmark correspondences, and then continue to show how one can
integrate it with the intensity-based model towards creating enhanced models that
combine the best of both worlds.
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1 Introduction

Medical image analysis plays an increasingly important role in many clinical appli-
cations. The increased amount and complexity of medical image data, which often
involve multiple 3D image modalities as well as multiple acquisitions in time, result
in a challenging analysis setting. Image registration, as well as image segmentation,
are the two principal tools that allow for automatic and timely data analysis.

Image registration consists of determining a spatial transformation that estab-
lishes meaningful anatomical, or functional, correspondences between different im-
age acquisitions. The term deformable is used to specify that the transformation is
allowed to spatially vary (in contrast to the case of linear or global registration). In
general, registration can be performed between two or more images. Nonetheless,
in this chapter, we will focus on registration methods that involve pairs of images.
The pairs of images may consist of acquisitions that image either the same subject
(intra-subject registration) or different subjects (inter-subject registration).

In intra-subject registration, the subject is typically imaged either under different
protocols, or at different time points. In the first case, different imaging modalities
are used to capture complementary anatomical or functional information, and im-
age registration is used to fuse this information towards enhancing the analytical
and diagnostic abilities of the clinicians. In the second case, one may study short- or
long-term longitudinal processes that range from tumor perfusion properties to nor-
mal aging and development. Another application of image registration is surgical or
treatment planning. The registration of pre-operative and interventional data allows
the clinical experts to refine their planning and improve care-giving.

Inter-subject registration is the cornerstone of population studies. Mapping mem-
bers of a population to a common domain allows the study of within-population
variability and the quantitative analysis of the form of anatomical structures. On
the other hand, when distinct populations are spatially aligned, it is possible to dis-
cover the focal differences that distinguish them by contrasting them in the common
domain.

In general, an image registration algorithm involves three components (see Fig.1
[75]): i) a transformation model; ii) a similarity criterion; and iii) an optimization
method. Image registration has been studied extensively during the past decades,
leading to a rich body of works. These works differ mainly in their choices with re-
spect to these three components. While an extensive overview of these components
is beyond the scope of this chapter, let us briefly discuss some of the most com-
mon choices and models. For a more comprehensive review, we refer the interested
reader to the books [26, 54], the surveys [53, 78, 93] and [75] that provide thorough
overviews of the advances of the past decades in deformable registration.

The choice of the transformation model is usually dictated by the application
at hand and is related to the nature of the deformation to be recovered. High-
dimensional nonlinear models are necessary to cope with highly variable soft tis-
sue, while low degrees of freedom models can represent the mapping between rigid
bone structures. It is important to note that increasing the degrees of freedom of the
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Fig. 1: Typical components of registration algorithms.

model, and thus enriching its descriptive power, often comes at the cost of increased
computational efficiency.

Several transformation models have been introduced in medical imaging for non-
rigid alignment. These models can be coarsely classified into two categories (see
Fig.1 [30, 75]): i) models derived from physical models, and ii) models derived from
the interpolation theory or geometric models. Among the most prominent choices
of the first class, one may cite elastic [19, 20], fluid [14, 18] or diffusion models
[22, 80, 85]. Whereas, the second class comprises radial basis functions [10, 67],
free-form deformations [69, 68], locally affine [55] and poly-affine models [2], or
models parametrized by Fourier [1, 4] or Wavelet basis functions [87].

The similarity criterion quantifies the degree of alignment between the images.
Registration methods can be classified into three categories (see Fig.1) depend-
ing on the type of information that is utilized by the similarity criterion: i) geo-
metric registration (a.k.a.landmark/feature-based registration); ii) iconic registration
(a.k.a.voxel-wise registration); and iii) hybrid registration.

Geometric registration aims to align meaningful anatomical locations or salient
landmarks, which are either automatically extracted from the images [51] or pro-
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vided by an expert. Geometric information is typically represented as point-sets and
registration is tackled by first estimating the point correspondences [43, 82] and
then employing an interpolation strategy (e.g. thin-plate splines [10]) to determine
a dense deformation field that will align the images. Alternatively, geometric meth-
ods may infer directly the transformation that aligns the images without explicitly
estimating point correspondences. This is possible by representing geometric in-
formation either as probability distributions [23, 83] or through the use of signed
distance transformations [32]. Last, there exist methods that opt to simultaneously
solve for both the correspondences and the transformation [15].

Iconic methods employ a similarity criterion that takes into account the intensity
information of all image elements. The difficulty of choosing an appropriate simi-
larity criterion varies greatly depending on the problem. In the mono-modal case,
where both images are acquired using the same device and one can assume that
the intensity profiles for the two images differ only by Gaussian noise, the use of
sum of squared differences can be sufficient. Nonetheless, in the multi-modal case,
where images from different modalities are involved, the criterion should be able to
account for the different principles behind the acquisition protocols and capture the
relation between the distinct intensity profiles. Towards this end, criteria based on
statistics and information theory have been proposed. Examples include correlation
ratio [65], mutual-information [86, 52] and Kullback-Leibler divergence [16]. Last,
attribute-based methods that construct rich descriptions by summarizing intensity
information over local regions have been proposed for both mono-modal and multi-
modal registration [74, 48, 62].

Hybrid methods opt to exploit both iconic and geometric information in an effort
to leverage their complementary nature towards more robust and accurate registra-
tion. Depending on how one combines the two types of information, three subclasses
can be distinguished. In the first case, geometric information is used to initialize the
alignment, while intensity-based volumetric registration refines the results [35, 64].
In the second case, geometric information can be used to provide additional con-
straints that are taken into account during iconic registration [27, 29]. In the third
case, iconic and geometric information are integrated in a single objective function
that allows for the simultaneous solution of both problems [11, 76, 25].

Once the transformation model and a suitable similarity criterion have been de-
fined, an optimization method is used in order to infer the optimal set of parameters
by maximizing the alignment of the two images. Solving for the optimal parameters
is particularly challenging in the case of image registration. The reason behind this
lies in the fact that image registration is, in general, an ill-posed problem and the
associated objective functions are typically non-linear and non-convex. The opti-
mization methods that are typically used in image registration fall either under the
umbrella of either continuous or discrete methods.

Typically, continuous optimization methods are constrained to problems where
the variables take real values and the objective function is differentiable. This type
of problems are common in image registration. As a consequence, these methods
(typically gradient descent approaches) have been widely used in image registration
[69, 8] because of the fact that they are rather intuitive and easy to implement.
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Moreover, they can handle a wide class of objective functions allowing for complex
modeling assumptions regarding the transformation model. Nonetheless, they are
often sensitive to the initial conditions, while being non-modular with respect to
the similarity criterion and the transformation model. What is more, they are often
computationally inefficient [24].

On the other hand, discrete optimization methods tackle problems where the vari-
ables take discrete values. Discrete optimization methods based on the Markov Ran-
dom Field theory have been recently investigated in the context of image registration
[24, 25]. Discrete optimization methods are constrained by limited precision due to
the necessary quantization of the solution space. Moreover, they can not efficiently
model complex variable interactions due to increased difficulty in inference. How-
ever, recent advances in higher-order inference methods have allowed the modeling
of more sophisticated regularization priors [42]. More importantly, discrete opti-
mization methods are versatile and can handle a wide range of similarity metrics
(including non-differentiable ones). What is more, they are more robust to the ini-
tial conditions due to the global search they perform, while often converging faster
than continuous methods.

In this chapter, we review the application of Markov Random Fields (MRFs)
in deformable image registration. We explain in detail how one can map image
registration from the continuous domain to discrete graph structures. We first present
graph-based deformable registration in the case of iconic registration and show how
one can encode intensity-based and statistical approaches. We then present discrete
attribute-based registration methods and complete the presentation by describing
MRF models for geometric and hybrid registration. Throughout this chapter, we
discuss the underlying assumptions as well as implementation details. Experimental
results that demonstrate the value of graph-based registration are given at the end of
every section.

2 Graph-based Iconic Deformable Registration

In this chapter, we focus on pairwise deformable registration. The two images are
usually termed as source (or fixed) and target (or moving) images, respectively. The
source image is denoted by S : ΩS ⊂ Rd 7→ R, while the target image by T : ΩT ⊂
Rd 7→ R, d = {2,3}. ΩS and ΩT denote the image domain for the source and target
image, respectively. The source image undergoes a transformation T : ΩS 7→ΩT .

Image registration aims to estimate the transformation T such that the two im-
ages get aligned. This is typically achieved by means of an energy minimization
problem:

argmin
θ

M (T,S◦T (θ))+R(T (θ)). (1)

Thus, the objective function comprises two terms. The first term, M , quantifies the
level of alignment between a target image T and a source image S under the influ-
ence of the transformation T parametrized by θ . The second term, R, regularizes
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the transformation and accounts for the ill-posedness of the problem. In general, the
transformation at every position x ∈Ω (Ω depicting the image domain) is given as
T (x) = x+u(x) where u is the deformation field.

The previous minimization problem can be solved by adopting either continuous
or discrete optimization methods. In this chapter, we focus on the application of
discrete methods that exploit Markov Random Field theory.

2.1 Markov Random Fields

In discrete optimization settings, the variables take discrete values and the optimiza-
tion is formulated as a discrete labeling problem where one searches to assign a label
to each variable such that the objective function is minimized. Such problems can
be elegantly expressed in the language of discrete Markov Random Field theory.

An MRF is a probabilistic model that can be represented by an undirected graph
G = (V ,E ). The set of vertices V encodes the random variables, which take values
from a discrete set L . The interactions between the variables are encoded by the set
of edges E . The goal is to estimate the optimal label assignment by minimizing an
energy of the form:

EMRF = ∑
p∈V

Up(lp)+ ∑
pq∈E

Ppq(lp, lq). (2)

The MRF energy also comprises two terms. The first term is the sum of all unary
potentials Up of the nodes p ∈ V . This term typically corresponds to the data term
since the unary terms are usually used to encode data likelihoods. The second term
comprises the pairwise potentials Ppq modeled by the edges connecting nodes p
and q. The pairwise potentials usually act as regularizers penalizing disagreements
in the label assignment of tightly related variables.

Many algorithms have been proposed in order to perform inference in the case
of discrete MRFs. In the works that are presented in this chapter, the fast-PD2 algo-
rithm [39, 40] has been used to estimate the optimal labeling. The main motivation
behind this choice is its great computational efficiency. Moreover, the fast-PD algo-
rithm is appropriate since it can handle a wide-class of MRF models allowing us to
use different smoothness penalty functions and has good optimality guarantees.

In the continuation of this section, we detail how deformable registration is for-
mulated in terms of Markov Random Fields. First, however, the discrete formulation
requires a decomposition of the continuous problem into discrete entities. This is
described below.

2 Fast-PD is available at http://cvc-komodakis.centrale-ponts.fr/.
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2.2 Decomposition into Discrete Deformation Elements

Without loss of generality, let us consider a grid-based deformation model that com-
bines low degrees of freedom with smooth local deformations. Let us consider a set
of k control points distributed along the image domain using a uniform grid pattern.
Furthermore, let k be much smaller than the number of image points. One can then
deform the embedded image by manipulating the grid of control points. The dense
displacement field is defined as a linear combination of the control point displace-
ments D = {d1, ...,dk}, with di ∈ Rd , as:

u(x) =
k

∑
i=1

ωi(x)di, (3)

and the transformation T becomes:

T (x) = x+
k

∑
i=1

ωi(x)di. (4)

ωi corresponds to an interpolation or weighting function which determines the influ-
ence of a control point i to the image point x – the closer the image point the higher
the influence of the control point. The actual displacement of an image point is then
computed via a weighted sum of control point displacements. A dense deformation
of the image can thus be achieved by manipulating these few control points.

The free-form deformation is a typical choice for such a representation [71]. This
model employs a weighting scheme that is based on cubic B-splines and has found
many applications in medical image registration [69] due to its efficiency and the
local support of the control points. We also employ this model. Nonetheless, let us
note that the discrete deformable registration framework is modular with respect to
the interpolation scheme and one may use this preferred strategy.

The parametrization of the deformation field leads naturally to the definition of
a set of discrete deformation elements. Instead of seeking a displacement vector for
every single image point, now, only the displacement vectors for the control points
need to be sought. If we take them into consideration, the matching term (see Eq. 1)
can be rewritten as:

M (S◦T ,T ) =
1
k

k

∑
i=1

∫
ΩS

ω̂i(x)ρ(S◦T (x),T (x))dx, (5)

where ω̂i are weighting functions similar to the ones in Eq. 4 and ρ denotes a simi-
larity criterion.

Here, the weightings determine the influence or contribution of an image point x
onto the (local) matching term of individual control points. Only image points in the
vicinity of a control point are considered for the evaluation of the intensity-based
similarity measure with respect to the displacement of this particular control point.
This is in line with the local support that a control point has on the deformation.
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The previous is valid when point-wise similarity criteria are considered. When a
criterion based on statistics or information theory is used, a different definition of
ω̂i is adopted,

ω̂i(x) =

{
1, if ωi(x)≥ 0,
0 otherwise.

(6)

Thus, in both cases the criterion is evaluated on a patch. The only difference is that
the patch is weighted in the first case. These local evaluations enhance the robustness
of the algorithm to local intensity changes. Moreover, they allow for computation-
ally efficient schemes.

The regularization term of the deformable registration energy (Eq. 1) can also be
expressed on the basis of the set of control points as:

R =
1
k

k

∑
i=1

∫
ΩS

ω̂i(x)ψ(T (x))dx, (7)

where ψ is a function that promotes desirable properties of the dense deformation
field such as the smoothness and topology preservation.

2.3 Markov Random Field Registration Energy

Having identified the discrete deformation elements of our problem, we need to map
them to MRF entities, i.e., the graph vertices, the edges, the set of labels, and the
potential functions.

Let Gico denote the graph that represents our problem. In this case, the random
variables of interest are the control point displacement updates. Thus, the set of
vertices Vico is used to encode them, i.e., |Vico| = |∆D| = k. Moreover, assigning
a label lp ∈ Lico to a node p ∈ Vico is equivalent to displacing the corresponding
control point p by an update ∆dp, or lp ≡ ∆dp. In other words, the label set for this
set of variable is a quantized version of the displacement space (Lico ⊂ Rd). The
edge system Eico is constructed by following either a 6-connected neighborhood
system in the 3D case, or a 4-connected system in the 2D case. The edge system
follows the grid structure of the transformation model.

According to Eq. 5 we define the unary potentials as:

Uico,p(lp) =
∫

ΩS

ω̂p(x)ρ(S◦Tico,lp(x),T (x))dx, (8)

where Tico,lp denotes the transformation where a control point p has been updated
by lp. Region-based and statistical measures are again encoded in a similar way
based on a local evaluation of the similarity measure.

Conditional independence is assumed between the random variables. As a con-
sequence, the unary potential that constitutes the matching term can only be an
approximation to the real matching energy. That is because the image deformation,
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and thus the local similarity measure, depends on more than one control point since
their influence areas do overlap. Still, the above approximation yields very accu-
rate registration as deomonstrated by the experimental validation results that are
reported in latter sections (Sec. 2.4, Sec. 3.3 and Sec. 4.3). Furthermore, it allows an
extremely efficient approximation scheme which can be easily adapted for parallel
architectures yielding extremely fast cost evaluations.

Actually, the previous approximation results in a weighted block matching strat-
egy encoded on the unary potentials. The smoothness of the transformation derives
from the explicit regularization constraints encoded by the pairwise potentials and
the implicit smoothness stemming from the interpolation strategy.

The evaluation of the unary potentials for a label l ∈Lico corresponding to an
update ∆d can be efficiently performed as follows. First, a global translation accord-
ing to the update ∆d is applied to the whole image, and then the unary potentials
for this label and for all control points are calculated simultaneously. This results in
an one pass through the image to calculate the cost and distribute the local energies
to the control points. The constrained transformation in the unary potentials is then
simply defined as Tico,lp(x) = Tico(x)+ lp, where Tico(x) is the current or initial
estimate of the transformation.

The regularization term defined in Eq. 7 could be defined as well in the above
manner. However, this is not very efficient since the penalties need to be computed
on the dense field for every variable and every label. If we consider an elastic-like
regularization, we can employ a very efficient discrete approximation of this term
based on pairwise potentials as:

Pico,elastic,pq(lp, lq) =
‖(dp +∆dp)− (dq +∆dq)‖

‖p−q‖
. (9)

The pairwise potentials penalize deviations of displacements of neighboring control
points (p,q) ∈ Eico which is an approximation to penalizing the first derivatives of
the transformation. Recall that lp ≡ ∆dp. Note, we can also remove the current dis-
placements dp and dq from the above definition yielding a term that only penalizes
the updates on the deformation. This would change the behavior of the energy from
an elastic-like to a fluid-like regularization.

Let us detail how the label set Lico is constructed since that entails an important
accuracy-efficiency trade-off. The smaller the set of labels, the more efficient is the
inference. However, few labels result in a decrease of the accuracy of the registra-
tion. This is due to the fact that the registration accuracy is bounded by the range
of deformations covered in the set of labels. As a consequence, it is reasonable to
assume that the registration result is sub-optimal. In order to strike a satisfactory
balance between accuracy and efficiency, we opt for an iterative labeling strategy
combined with a search space refinement one. At each iteration, the optimal label-
ing is computed yielding an update on the transformation, i.e. lp ≡ ∆dp. This update
is applied to the current estimate, and the subsequent iteration continues the regis-
tration based on the updated transformation and a refined label set. Thus, the error
induced by the approximation stays small and incorrect matches can be corrected
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in the next iteration. Furthermore, the overall domain of possible deformations is
rather bounded by the number of iterations and not by the set of finite labels.

The iterative labeling allows us to keep the label set quite small. The refinement
strategy on the search space is rather intuitive. In the beginning we aim to recover
large deformations and as we iterate, finer deformations will be added refining the
solution. In each iteration, a sparse sampling with a fixed number of samples s is em-
ployed. The total number of labels in each iteration is then |Lico|=g ·s+1 including
the zero-displacement and g is the number of sampling directions. We uniformly
sample displacements along certain directions up to a maximum displacement mag-
nitude dmax. Initially, the maximum displacement corresponds to our estimation of
the larger deformation to be recovered. In the subsequent iterations, it is decreased
by a user-specified factor 0< f <1 limiting and refining the search space.

The number and orientation of the sampling directions g depend on the dimen-
sionality of the registration. One possibility is to sample just along the main coor-
dinate axes, i.e. in positive and negative direction of the x-, y-, and z-axis (in case
of 3D). Additionally, we can add samples for instance along diagonal axes. In 2D
we commonly prefer a star-shape sampling, which turns out to be a good compro-
mise between the number of samples and the sampling density. In our experiments
we found that also very sparse samplings (e.g., just along the main axes) gives very
accurate registration results but might increase the total number of iterations that
are needed until convergence. However, a single iteration is much faster to com-
pute when the label set is small. In all our experiments we find that small label sets
provide an excellent performance in terms of computational speed and registration
accuracy.

The explicit control that one has over the creation of the label set L enables us to
impose desirable properties on the obtained solution without further modifying the
discrete registration model. Two interesting properties that can be easily enforced
by adapting appropriately the discrete solution space are diffeomorphisms and sym-
metry. Both properties are of particular interest in medical imaging and have been
the focus of the work of many researchers.

Diffeomorphic transformations preserve topology and both them and their in-
verse are differentiable. These transformations are of interest in the field of com-
putational neuroanatomy. Moreover, the resulting deformation fields are, in gen-
eral, more physically plausible since foldings, which would disrupt topology, are
avoided. As a consequence, many diffeomorphic registration algorithms have been
proposed [8, 68, 3, 5, 85].

In this discrete setting, it is straightforward to guarantee a diffeomorphic result
through the creation of the label set. By bounding the maximum sampled displace-
ment by 0.4 times the deformation grid spacing, the resulting deformation is guar-
anteed to be diffeomorphic [68].

The majority of image registration algorithms are asymmetric. As a consequence,
when interchanging the order of input images, the registration algorithm does not
estimate the inverse transformation. This asymmetry introduces undesirable bias
upon any statistical analysis that follows registration because the registration result
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depends on the choice of the target domain. Symmetric algorithms have been pro-
posed in order to tackle this shortcoming [13, 5, 56, 84, 79].

Symmetry can also be introduced in graph-based deformable registration in a
straightforward manner [77]. This is achieved by estimating two transformations,
T f and T b, that deform both the source and the target images towards a common
domain that is constrained to be equidistant from the two image domains. In order
for this to be true, the transformations, or equivalently the two update deformation
fields, should sum up to zero. If one assumes a transformation model that consists
of two isomoprhic deformation grids, this constraint translates to ensuring that the
displacement updates of corresponding control points in the two grips sum to zero
and can be simply mapped to discrete elements.

The satisfaction of the previous constraint can be easily guaranteed in a discrete
setting by appropriately constructing the label set. More specifically, by letting the
labels index pairs of displacement updates (one for each deformation field) that sum
to zero, i.e. lp ≡ {∆d f

p,−∆db
p}. The extension of the unary terms is also straightfor-

ward, while the pairwise potentials and the graph construction are the same.

2.4 Experimental Validation

In this section, we present experimental results for the graph-based symmetric reg-
istration in 3D brain registration. The data set consists of 18 T1-weighted brain
volumes that have been positionally normalized into the Talairach orientation (rota-
tion only). The MR brain data set along with manual segmentations was provided
by the Center for Morphometric Analysis at Massachusetts General Hospital and
are available online3. The data set was rescaled and resampled so that all images
have a size equal to 256× 256× 128 and a physical resolution of approximately
0.9375×0.9375×1.5000mm.

This set of experiments is based on intensity-based similarity metrics (for results
using attribute-based similarity metrics, we refer the reader to the next section of this
chapter). The results are compared with a symmetric registration method based on
continuous optimization [5] that is considered to be the state of the art in continuous
deformable registration [38]. Both methods use Normalized Cross Correlation as
the similarity criterion.

A multiresolution scheme was used in order to harness the computational bur-
den. A three-level image pyramid was considered while a deformation grid of four
different resolutions was employed. The two finest grid resolutions operated on the
finest image resolution. The two coarsest operated on the respective coarse image
representations. The initial grid spacing was set to 40mm resulting in a deformation
grid of size 7× 7× 6. The size of the gird was doubled at each finer resolution.
A number of 90 labels, 30 along each principal axis, were used. The maximum

3 http://www.cma.mgh.harvard.edu/ibsr/data.html
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displacement indexed by a label was bounded to 0.4 times the grid spacing. The
pairwise potentials were weighted by a factor of 0.1.

Fig. 2: a) In the first row, from left to right, the mean intensity image is depicted for the data set,
after the graph-based symmetric registration method and after [5]. In the second row, from left to
right, the target image is shown as well as a typical deformed image for the graph-based symmetric
registration method and [5]. For all cases, the central slice is depicted. b) Boxplots for the DICE
criterion initially, with the graph-based symmetric registration method and with [5]. On the left,
the results for the WM. On the right, the results for the GM. The figure is reprinted from [77].

The qualitative results (sharp mean and deformed image) suggest that both meth-
ods successfully registered the images to the template domain. The results of [5]
seem to have produced more aggressive deformation fields that have resulted to
some unrealistic deformations in the top of the brain and can also be observed in the
borders between white matter (WM) and gray matter (GM). This aggressive regis-
tration has also resulted in slightly more increased DICE coefficients for WM and
GM. However, the results reported for the graph-based registration method were
obtained in 10 min. On the contrary, 1 hour was necessary to register the images
with [7] approximately. This important difference in the computational efficiency
between the two methods can outweigh the slight difference in the quality of the
solution in practice.

3 Graph-based Attribute-Based Deformable Registration

In the previous section, we studied the application of intensity-based deformable
registration methods that involve voxel-wise and statistical similarity criteria. While
these criteria are easy to compute and widely used, they suffer from certain short-
comings. First, they often have difficulties to reflect the underlying anatomy because
pixels belonging to the same anatomical structure are often assigned different inten-
sity values due to variabilities arising from scanners, imaging protocols, noise, par-
tial volume effects, contrast differences, and image inhomogeneities. Moreover, sin-
gle intensities are not informative enough to uniquely characterize image elements,
and thus reliably guide image registration. For instance, hundreds of thousands of
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gray matter voxels in a brain image share similar intensities; but they belong to dif-
ferent anatomical structures. As a consequence, matching ambiguities arise in the
matching between two images.

In order to reduce matching, one needs to characterize each voxel more dis-
tinctively. This may be achieved by creating richer high-dimensional descriptors
of image elements that capture texture or geometric regional attributes. Therefore,
attribute-based similarity criteria have been increasingly used in image registration.
Typical examples include the use of geometric-moment-invariant (GMI) attributes
coupled with tissue membership attributes and boundary/edge attributes [74], neigh-
borhood intensity profile attributes [28], local frequency attributes [49, 34], local in-
tensity histogram attributes [73, 88], geodesic intensity histogram attributes [47, 44]
and scale-invariant attributes [81].

3.1 Gabor Attributes

The versatility of graph-based deformable registration models allows the seamless
integration of any of the previous attribute-based similarity criteria. Nonetheless,
the previous approaches involve features that are either application-specific and fail
to generalize to other applications, or require sophisticated pre-processing steps
(e.g.segmentation). As a consequence, it is important to appropriately choose the
attribute-based description so that, when coupled with the highly modular discrete
approaches, a general-purpose registration method is possible.

Gabor-attributes, which involve image convolution with Gaussian filters at mul-
tiple scales and orientations, present an interesting choice for general-purpose de-
formable registration. The reason is threefold. First, all anatomical images have
texture information, at some some scale and orientation, reflecting the underlying
geometric and anatomical characteristics. As a results, Gabor features that are able
to capture this information can be, and have been, applied in a variety of studies.
Second, Gabor filters are able to capture edge information that is relatively encoded
by various image modalities, thus making them suitable for both mono- and multi-
modal registration tasks. Third, their multi-scale and multi-orientation nature render
image elements more distinctive and better identifiable for establishing correspon-
dences. For example, the scale information helps differentiate voxels that are the
center of a small and a bigger plate, respectively. The orientation information can
help distinguish, for example, a voxel on a left-facing edge from a voxel on a right-
facing edge. Moreover, it is also possible to automatically select a subset of Gabor
attributes such that the information redundancy is reduced and the distinctiveness of
the descriptor is increased.

The effect of characterizing voxels using Gabor attributes (with and without op-
timal Gabor attribute subset selection) is presented in Fig. 3 (reprinted from [62]).
These effects are contrasted to the effect of using only intensities and using Gray-
Level-Cooccurance-Matrix (GLCM) texture attributes through the use of similarity
maps between voxels from the source image (labeled under crosses) and all voxels
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Fig. 3: The similarity maps between special/ordinary voxels (labeled by red/blue crosses) in the
source (a.k.a, subject) images and all voxels in the target (a.k.a, template) images. As corre-
spondences were sought based on voxel similarities (subject to spatial smoothness constraints),
(optimal-)Gabor-attribute-based similarity maps returned a much smaller search range for corre-
spondences. This figure is reprinted from [62].

.

in the target image. The similarity between two voxels, x in the source image and y
in the target image, was defined as sim(x,y) = 1

1+‖A(x)−A(y)‖2 , with A(·) being the
attribute vector at each voxel. This similarity ranged from 0 (when the attributes be-
tween two voxels differed infinitely) and 1 (when the attributes between two voxels
were identical). This figure shows that, as one replaced the intensity-based similar-
ity to (optimal)-attribute-based similarities, even very ordinal voxels under the blue
crosses were distinctively characterized or better localized in the space, therefore we
only needed to search for their corresponding voxels within a much smaller range
in the target image, largely removing matching ambiguities.

Let us detail in the next section how one can introduce Gabor-based attributes in
the case of graph-based deformable registration [62]. More specifically, let us detail
how the Markov Random Field energy (see Eq. 2) changed in this regard.
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3.2 Markov Random Field Registration Energy

The ease with which one can adopt attribute-based similarity criteria in the case of
graph-based formulations for deformable registration is evidence of their high ver-
satility and modularity. The key elements of the graphical model (i.e., graph con-
struction, pairwise potentials, inference) need not change. One only needs to slightly
change the definition of the unary potentials.

The unary potentials need only be modified in two regards: i) to evaluate the sim-
ilarity criterion ρ over the attribute vectors A(·); and ii) to optionally, as suggested
by [62], take into account a spatially-varying weighting parameter ms(x), namely
”mutual-saliency”, which automatically quantified the confidence of each voxel x
to establish reliable correspondences across images. Therefore, the modified unary
potentials are defined as:

Uico,p(lp) =
∫

ΩS

ms(x) · ω̂p(x) ·ρ(AS ◦Tico,lp(x),AT (x))dx. (10)

3.3 Experimental Validation

In this section we present results obtained with an attributed-based discrete de-
formable registration termed DRAMMS (Deformable Registration via Attribute
Matching and Mutual-Saliency) [62]. The presented results demonstrate the advan-
tageous computational efficiency of graph-based registration method in compari-
son to the traditional gradient descent optimization strategy. Moreover, the results
demonstrate the generality, accuracy and robustness of coupling attributed-based
similarity criteria with graph-based formulations.

As far as the computational efficiency is concerned, Fig. 4 summarizes the com-
putational time that is required to register brain, prostate, and cardiac images us-
ing a gradient descent optimization strategy and a discrete optimization strategy
[39, 40], respectively. The discrete approach requires significantly reduced compu-
tational time.

In the second part of this section, we report results for DRAMMS in two different
cases: i) skull-stripped brain MR images; and ii) brain MR images from the large-
scale, multi-institutional, with-skull ADNI database.

In the first case, DRAMMS was compared to 11 other popular and publicly-
available registration tools, all used with the optimized parameters as reported in
[38] whenever applicable. In the public NIREP dataset containing T1-weighted MR
images (256× 300× 256 voxels and 1.0× 1.0× 1.0mm3/voxel) of 16 healthy sub-
jects, each registration method was applied to all the possible 210 pair-wise regis-
trations, leading to 2,520 registrations in total. DRAMMS had been shown to yield
the highest average Jaccard overlap among 32 regions-of-interest (ROIs) annotated
by human expert, indicating the high accuracy (Fig. 5). Such a trend had also been
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Fig. 4: The computational times (in minutes) when combing the MRF registration formulation with
the discrete optimization strategy versus with the traditional gradient descent optimization strategy.
The discrete optimization strategy on the MRF registration formulation helped significantly reduce
the computational time. AM refers to attribute matching; MS refers to mutual-saliency weighting,
which is a second component in DRAMMS but was not described in full detail in this section;
basically it is a automatically computed weighting for adaptively utilizing voxels based on how
much confidence we have for those voxels to find correspondences across images. FFD is the free
form deformation transformation model as used in the MRF registration formulation. And DisOpt
and GradDes are the discrete optimization and gradient descent optimization strategies. This figure
is reprinted from [62].

observed in several other databases containing skull-stripped brain MR images from
healthy subjects [57].

Fig. 5: The average Jaccard overlap among all ROIs in all possible pair-wise registrations within
the NIREP database, for different registration tools. Reprinted from [57].

.

In the second case, DRAMMS was validated using brain MR images from the
ADNI study. This study presents particular challenges because it contains data ob-
tained at different sites and regions affected by pathologies. In Fig. 6 (re-printed
from [57]) one can observe that DRAMMS can align largely variable ventricles,
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whereas other registration tools encountered great challenges. This is characteristic
of the accuracy and robustness of the attribute-based discrete deformable registra-
tion method.

Fig. 6: Example registration results between subjects in the multi-site Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database, by different registration methods. Blue arrows point out
regions where the results from various registration methods differ. Reprinted from [57].

These results emphasize the generality, accuracy and robustness of the attribute-
based discrete deformable registration. Because of these characteristics and its pub-
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lic availability4, DRAMMS has found application in numerous translational studies
including neuro-degenerative studies [41, 90, 17, 72], neuro-developmental ones
[70, 60, 21, 33] as well as oncology studies [6, 59]. These applications underline the
versatility of combining attribute-based similarity criteria with graph-based formu-
lations.

4 Graph-based Geometric and Hybrid Deformable Registration

The previous two sections presented MRF-based iconic (a.k.a.voxel-wise) registra-
tion using intensity- and attribute-based similarities. Typically, iconic approaches
evaluate the similarity criteria over the whole image domain and have the potential
to better quantify and represent the accuracy of the estimated dense deformation
field, albeit at an important computational cost. Nonetheless, iconic approaches do
not explicitly take into account salient image points, failing to fully exploit image in-
formation. Moreover, the performance of iconic methods, especially methods based
on continuous optimization, is greatly influenced by the initial conditions.

On the other hand, geometric methods utilize only a sparse subset of image el-
ements that correspond to salient geometry or anatomy. Exploiting relevant infor-
mation results in increased robustness. Nonetheless, the quality of the estimated
deformation field is high only on the vicinity of the landmarks.

Hybrid registration methods exploit both types of information towards bridging
the gap between the two basic classes of registration and enjoying the advantages of
both worlds. Iconic and geometric information are integrated in an unified objective
function and the solutions of the two problems satisfy each other. In this setting,
iconic methods may profit from geometric information in the cases they encounter
difficulties arising, for example, from large deformations (e.g., the largely different
ventricle size in Alzheimer’s Disease population), or from missing correspondences
such as the existence of pathologies. At the same time, geometric correspondences
can be refined based on the iconic information that is available throughout the image
domain.

In this section, we consecutively study the graph-based formulation of geomet-
ric and hybrid deformable registration. Similarly to the previous sections, we first
study the two problems in their continuous form and show how they can be decom-
posed in discrete entities. Then, we detail the graph-based formulation and present
experimental results.

4 DRAMMS is available at http://www.nitrc.org/projects/dramms/.
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4.1 Decomposition into Discrete Deformation Elements

4.1.1 Geometric Registration

A prerequisite for geometric registration is the availability of landmarks that encode
salient geometry or anatomy. Landmarks can be annotated by experts, or, to reduce
intra-/inter-expert variability, by (semi-)automated methods. The latter is an open
problem and an active topic of research.

Automatic approaches to detect landmarks include, but are not limited to, edge
detection [66, 31], contour delineation [45], anatomical structure segmentation
[9, 12], scale space analysis [63, 46, 36], and feature transformation (e.g., SIFT
[50, 89, 37], SURF [7, 92]). In [91, 61], for example, the authors used Laplacian
operations to search for blob-like structures, and used the centers of the blobs as
landmarks. In [58], the authors used regional centers or edges at various scales and
orientations as landmarks, which were of strong response to Gabor filters. While a
detailed survey of landmark detection is outside the scope of this section, we want
to emphasize that the described graph-based formulation can seamlessly integrate
landmark information coming from any algorithm or expert.

Given two sets of landmarks K (κ ∈ K) and Λ (λ ∈ Λ), one aims to estimate
the transformation Tgeo that will bring them into correspondence by minimizing an
objective function of the form of Eq. 1. More specifically, the goal is to bring every
landmark belonging the set K as close as possible to the landmark in the set Λ that
is most similar to it. In other words, the matching term is expressed as:

Mgeo(K ◦Tgeo,Λ) =
1
n

n

∑
i=1

δ (Tgeo(κ i), λ̃ i) (11)

where δ measures the Euclidean distance between two landmark positions, and

λ̃i = argmin
λ j

ρ(Tgeo(κ i).λ j). (12)

Note that the Euclidean position of the landmarks λ and κ is denoted in bold.
As far as the regularization term Rgeo is concerned, it aims to preserve the

smoothness of the transformation. More specifically, it aims to locally preserve the
geometric distance between pairs of landmarks:

Rgeo(Tgeo) =
1

n(n−1)

n

∑
i=1

n

∑
j=1, j 6=i

‖(Tgeo(κ i)−Tgeo(κ j))− (κ i−κ j)‖. (13)

This implies the assumption that a linear registration step that has accounted for
differences in scales has been applied prior to the deformable registration.

An equivalent way of formulating the geometric registration problem consists of
first pairing landmarks κ ∈ K with the most similar in appearance landmarks λ ∈Λ

and then pruning the available pairs by keeping only those that are geometrically
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consistent as quantified by the regularization term (Eq. 13). Let us note that, in both
cases, the problem is inherently discrete.

4.1.2 Hybrid Registration

As discussed in the introduction, there are various ways of integrating geometric and
iconic information. The most interesting, and potentially more accurate, is the one
that allows both problems to be solved at the same time through the optimization of
a universal energy that enforces the separate solutions to agree. This is possible by
combining the previous energy terms for the iconic and geometric problem along
with a hybrid term that acts upon the separate solutions:

H (Tico,Tgeo) =
1
n

n

∑
i=1
‖Tico(κ i)−Tgeo(κ i)‖. (14)

Note that we only need to enforce the agreement of the two solutions in the landmark
positions. If we now also consider a connection between control point displacements
D and landmark displacements, the previous relation can be rewritten as:

H (Tico,Tgeo) =
1
n

n

∑
i=1
‖κ i +ugeo(κ i)−κ i−

k

∑
j=1

ω j(κ i)d j‖, (15)

where ugeo(κ i) = λ̃ i−κ i, i.e. the displacement for the correspondence of the two
landmarks κi and λ̃i. As a principle, we would like this displacement to be ideally
equal to the one that is given as a linear combination of the displacements of the
control points at the position of a landmark. However, we can relax the previous
requirement in order to increase the computational efficiency of the method. If we
apply the triangular inequality and exploit the fact that the coefficients ω j are posi-
tive, the coupling constraint is redefined as:

H (Tico,Tgeo)≤
1
n

n

∑
i=1

k

∑
j=1

ω j(κ i)‖ugeo(κ i)−d j‖. (16)

The previous constraint comprises only pairwise interactions between discrete ele-
ments.

4.2 Markov Random Field Registration Energy

Having identified the discrete elements for both geometric and hybrid registration,
let us map them to MRF entities.
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4.2.1 Geometric Registration

Let us now introduce a second graph Ggeo =
(
Vgeo,Egeo

)
for the geometric entities

K,Λ . We remind that they are two sets of landmarks having different cardinalities
and we seek the transformation which will bring each landmark into correspon-
dence with the best candidate. Equivalently, we may state that we are trying to solve
for the correspondence of each landmark, which naturally results in a set of sparse
displacements.

The second graph consists of a set of vertices Vgeo corresponding to the set of
landmarks extracted in the source image, i.e. |Vgeo| = |K|. A label assignment lp ∈
Lgeo := Λ (where p ∈ Vgeo) is equivalent to matching the landmark κp ∈ K to a
candidate point lp ≡ λ ∈ Λ . Assigning a label lp implicitly defines a displacement
ugeo,lp(κ p) = λ −κ p, since κp is mapped on the landmark lp.

According to Eq. 12, the unary potentials are defined as:

Ugeo,p(lp) = ρ(κp, lp). (17)

The two different though equivalent ways to see the label assignment problem are
depicted in the previous equation. Assigning a label lp can interpreted as applying
a transformation Tgeo,lp = κ p + ugeo,lp(κ p) or stating that the landmark κp corre-
sponds to the lp. Contrary to the iconic case, the set of transformations that can be
applied is specified by the candidate landmarks and is sparse in its nature.

There is a number of ways to define the dissimilarity function ρ . One approach
would be to consider neighborhood information. That can be easily done by evalu-
ating the criterion over a patch centered around the landmarks,

Ugeo,p(lp) =
∫

ΩS,p

ρ(S◦Tgeo,lp(x),T (x))dx, (18)

where ΩS,p denotes a patch around the point κp. Another approach is to exploit
attribute-based descriptors and mutual saliency [58] and define the potential as:

Ugeo,p(lp) = exp
(
−

ms(κp, lp) · sim(κp, lp)

2σ2

)
. (19)

where σ is a scaling factor, estimated as the standard deviation of the mutual
saliency values of all the candidate pairs.

The regularization term defined in Eq. 13 can be encoded by the edge system
Egeo of the graph. In this setting, the regularization term can be expressed as:

Egeo,pq(lp, lq) = ‖(Tgeo,lp(κ p)−Tgeo,lq(κq))− (κ p−κq)‖. (20)

The pairwise potential will enforce an isometric constraint. Moreover, by consider-
ing the vector differences flipping of the point positions is penalized.

Last, it is interesting to note that the same graph Ggeo is able to encode both ways
of formulating the geometric registration problem that were presented in Sec. 4.1.1.
This model was presented in [58] and [76].
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4.2.2 Hybrid Registration

In this case, the graph-based formulation will consist of the discrete model for the
iconic and geometric registration along with a coupling penalty (Eq. 16). Therefore,
the graph that represents the problem comprises Gico and Ggeo along with a third
set of edges Ehyb containing all possible connections between the iconic random
variables and the geometric variables. The pairwise label assignment penalty on
these coupling edges is then defined as:

Phyb,pq(lp, lq) = ωq(κ p)
∥∥ugeo,lp(κ p)− (dq + lq)

∥∥ , (21)

where p ∈ Vgeo and q ∈ Vico, lp ∈ Lgeo and lq ∈ Lico, and (p,q) ∈ Ehyb. Such a
pairwise term couples the displacements given by the two registration processes and
imposes consistency. To conclude, the coupled registration objective function is rep-
resented by an MRF graph Ghyb = (Vgeo∪Vico,Egeo∪Eico∪Ehyb) with its associated
unary and pairwise potential functions. This model was presented in [76].

4.3 Experimental Validation

4.3.1 Geometric Registration

Fig. 7 shows a typical landmark pair detected by Gabor response and matched by
the MRF formulation. Many such pairs found by the MRF formulation resulted in a
deformation that was smoother with the MRF regularization rather than without, as
can be seen in Fig. 8.

Fig. 7: An example landmark pair (denoted by red and blue crosses) detected based on the Ga-
bor response-based similarity metric and the mutual-saliency measure. (a) Source and (b) target
images. This figure is re-printed from [58].
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Fig. 8: The Dense deformation fields generated by (a) M1 – no MRF regularization and (b) M2 –
with MRF regularization. This figure is re-printed from [58].

4.3.2 Hybrid Registration

In order to validate the coupled geometric registration method in a way that is invari-
ant to landmark extraction, a multi-modal synthetic data set is used. In this setting,
the ground truth deformation is known allowing for a quantitative analysis of the
registration performance regarding both the dense deformation field accuracy and
the quality of the established landmark correspondences.

The goal of this experiment is to demonstrate the added value from considering
geometric information on top of standard iconic one. Thus, a comparison of the
proposed framework with and without the geometric registration part takes place.
Regarding the results, if we look at the registration accuracy in terms of end point
error (Table 1), we see that the coupled iconic geometric registration method is able
to further improve the results of the iconic one. This is evident, as the end point error
has decreased by taking advantage of the geometric information.

As we expect the hybrid approach to be able to cope with large displacements bet-
ter than the pure iconic one, we repeated the experiments by decreasing the initial
control point spacing to 20mm and thus limiting the maximum amount of deforma-
tion that can be handled. The results are also reported in Table 1. In this case, we can
observe a more significant difference between the performance of the two proposed
approaches. Therefore, we should conclude that the additional computational cost
demanded by the coupled approach can be compensated by the better quality of the
results.

5 Conclusion

This chapter presents a comprehensive overview of graph-based deformable regis-
tration. Discrete models for the cases of deformable registration involving point-
wise intensity-based similarity criteria, statistical intensity-based criteria, attribute-
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# Iconic (h=60mm) Hybrid (h=60mm) Iconic (h=20mm) Hybrid (h=20mm)
mean std mean std mean std mean std

1 1.33 0.69 1.25 0.59 1.38 1.21 0.98 0.61
2 1.32 0.75 1.18 0.53 2.46 3.21 1.06 0.68
3 1.44 0.97 1.22 0.56 2.05 2.40 1.03 0.67
4 1.40 0.74 1.16 0.50 1.40 1.02 1.08 0.69
5 1.23 0.60 1.15 0.56 1.38 1.01 1.03 0.67
6 1.35 0.74 1.24 0.62 1.58 1.39 1.05 0.71
7 1.16 0.56 1.09 0.50 1.45 1.18 1.05 0.67
8 1.29 0.68 1.23 0.58 1.93 2.61 1.11 0.79
9 1.23 0.62 1.19 0.53 1.72 1.89 1.04 0.71
10 1.54 1.08 1.19 0.58 2.60 3.43 1.05 0.73
all 1.33 0.11 1.19 0.05 1.79 0.45 1.05 0.03

Table 1: End point error (in millimeters) for the registration of the Synthetic MR Dataset. The grid spacing is denoted
by h. This figure is reprinted from [25].

based ones as well as for geometric and hybrid registration were presented. The
increased computational efficiency, accuracy and robustness of graph-based formu-
lations was also demonstrated.
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