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Abstract
Machine learning plays an essential role in the medical imaging field. High-dimensional pattern
analysis techniques have been developed that can identify, and quantify, subtle and spatially com-
plex patterns of structural and functional changes in the brain that are induced by brain diseases
despite the presence of confounding statistical noise and inter-individual anatomical and func-
tional variability. Sophisticated pattern analysis of structural and functional images can detect
early signs of diseases, which otherwise would remain undetectable using conventional methods.
As a consequence, pattern analysis techniques have been used to construct sensitive biomarkers
that can identify disease, or risk for developing it, and characterize future clinical progression
on an individual patient basis. This has lead to led to them becoming an indispensable part for
the growing need for personalized, predictive medicine. However, despite important advances
and successes, there remains a number of challenges to be addressed before gaining widespread
acceptance as tools for precision diagnostics and prognostics in clinical practice. Some of the
most important challenges include: i) feature extraction and dimensionality reduction; ii) read-
ily interpreting complex multivariate models; and iii) elucidating disease heterogeneity. In this
chapter, we describe these challenges, putting emphasis on possible solutions and present evi-
dence of the usefulness of machine learning techniques at the clinical and research level.

Keywords: Multivariate pattern analysis, high-dimensional pattern classification, regression,
Support Vector Machines, statistical inference, heterogeneity, clustering, Markov Random
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1. Introduction

The advent of new imaging modalities providing high resolution depictions of the anatomy
and function of the brain in disease and health has resulted in medical imaging becoming in-
creasing indispensable for patients’ healthcare. The way medical images are analyzed has been
greatly shaped by machine learning, which has found application in numerous fields including
image segmentation, image registration, image fusion and computer aided diagnosis.

Among the reasons behind the success of machine learning in medical imaging is increased
automation, high sensitivity and specificity. Machine learning has fueled automated approaches
that provide measurements by circumventing the error-prone and labor-intensive manual proce-
dures that are typically involved in traditional region of interest based analyses. Moreover, con-
trary to conventional automated approaches such as mass univariate analyses, high dimensional
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multivariate pattern analysis (MPVA) driven ones fully harness the potential of high dimensional
data by examining statistical relationships between elements that span the whole image domain.

Integrating information from the whole domain along while taking advantage of prior knowl-
edge allows MVPA techniques to identify and measure subtle and spatially complex structural
and functional changes in the brain that are induced by disease or pharmacological interventions
despite important normal variability. As a consequence, sophisticated pattern analysis techniques
have been employed to identify disease-specific signatures and elucidate the selective vulnera-
bility of different brain networks to different pathologies. This has led to the construction of
sensitive biomarkers that are able to quantify the risk of developing a disease, track the disease
progression or the effect of pharmacological interventions in clinical trials, and deliver patient
specific diagnosis before measurable clinical effects occur.

Neurodegenerative diseases such as Alzheimer’s Disease (AD) have been in the epicenter
of the development of computerized biomarkers. Machine learning diagnostic and prognostic
tools have been developed to identify patients with neurodegenerative diseases such as dementia
[1–11], to differentially distinguish between Alzheimer’s Disease and frontotemporal dementia
(FTD) [12], or to predict clinical progression of patients [13, 14]. Mental disorders have also
provided fertile ground for the application of computer assisted imaging techniques. Fully au-
tomated classification algorithms have been successfully applied to diagnose a wide range of
neurological and psychiatric diseases, including schizophrenia [15, 16], psychosis [17] or de-
pression [18].

However, despite important advances and successes, there remains significant challenges to
be addressed. Three of the most important challenges comprise i) dimensionality reduction;
ii) interpreting the learned model; and iii) elucidating disease heterogeneity.

The first challenge regards one of the fundamental problems one encounters when training
machine learning models to identify imaging signatures towards automated diagnosis and prog-
nosis, namely, the sheer dimensionality of imaging data along with the relatively small sample
size that is typically available. This problem is further exacerbated by the increasing resolution
of the imaging data as well as the increasing availability of multi-parametric imaging, which
further increase the dimensionality and complexity of the available data. The main challenge is
to summarize the imaging information through a reduced number of features that is compatible
with the sample size of a typical imaging study, while retaining the necessary information that
will allow the learning system to recognize relevant imaging patterns.

The second challenge regards the interpretability of the learned model. Machine learning
models are generally treated as “black-boxes” that provide us with an index of the presence
of a disease. While this index may be used to perform diagnosis, it does not inform us about
how each brain region contributes to the construction of the discriminative mutlivariate pattern.
This information is of significant importance since it provides key insight regarding the selective
vulnerability of different brain systems to different pathologies, thus elucidating disease mecha-
nisms, paving the road for more effective treatments.

The third challenge regards elucidating disease heterogeneity. Most existing methodologies
assume a single unifying pathophysiological process and aim to reveal it by identifying a unique
imaging pattern that can distinguish between healthy and diseased populations, or between two
subgroups of patients. However, this assumption effectively disregards ample evidence for the
heterogeneous nature of brain diseases. Neurodegenerative, neuropsychiatric and neurodevelop-
mental disorders are characterized by high clinical heterogeneity, which is likely due to the under-
lying neuroanatomical heterogeneity of various pathologies. Elucidating disease heterogeneity
is crucial for deepening our understanding and may lead to more precise diagnosis, prognosis
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and specialized treatment.
In this chapter, we are going to present solutions for tackling the aforementioned challenges.

In Sec. 2 we present clustering and statistical-based approached for dimensionality reduction of
both structural and functional data. In Sec. 3 we detail an efficient technique for deriving sta-
tistical significance maps in classification tasks using Support Vector Machines, while in Sec. 4
we present a palette of techniques to tackle disease heterogeneity under different methodological
assumptions. In Sec. 5 we provide evidence of the usefulness of machine learning techniques at
the clinical and research level, while Sec. 6 concludes the chapter.

2. Dimensionality Reduction

During the past decades, the advent of high-resolution imaging techniques has given rise to
high dimensional, complex clinical data sets consisting of hundred of patient scans that comprise
millions of voxels [19, 20]. The high dimensionality of the data along with the relative small
sample size that is typically available pose an important challenge when aiming to holistically
analyze imaging patterns in association with brain diseases. This challenge is further exacerbated
by the increasing availability of multi-parametric imaging data, which results in additionally
increasing both the dimensionality and the complexity of the data. Moreover, the emergence
of sophisticated imaging techniques, such as diffusion tensor imaging and functional magnetic
resonance imaging that derive complex representations of the axonal anatomy and brain activity,
not only emphasize the aforementioned challenge but also call for tailored analysis tools.

Towards addressing the previous challenge, dimensionality reduction is typically performed.
The aim is to extract in an optimal way a few imaging features, thus reducing the dimensionality
of the data to a level that is compatible with the sample size of a typical imaging study. Addi-
tionally, the extracted features should retain the important image information that will allow for
the identification of imaging patterns that offer good predictive value.

Numerous approaches have been proposed for reducing the dimensionality of imaging data.
Dimensionality reduction methods can be typically categorized into two groups: i) spatial group-
ing, and ii) statistically driven reduction depending on the driving assumption behind its method.
In the first case, one aims to group together elements that are spatially close and similar in terms
of imaging measurements. In the second case, emphasis is put on considering together image el-
ements that vary in consistent ways across the population. This taxonomy may be further refined
by taking into account the nature of the imaging data the method handles.

2.1. Dimensionality reduction through spatial grouping

Methods of this class typically formulate the problem as a clustering one and dimensionality
reduction is achieved by summarizing the data through a restricted set of features that corre-
spond to the estimated clusters. Features are typically extracted by a computing a single average
measure per estimated cluster, while clusters are obtained by segmenting the brain into contigu-
ous regions that encompass elements whose imaging measurements are similar to each other.
Defining an appropriate similarity measure is of significant importance for the success of these
methods and should take into account the nature of the imaging signal, leading to data-specific
algorithms. Following, we summarize two such algorithms for structural Magnetic Resonance
Imaging (MRI) scans and resting-state functional MRI (rs-fMRI), respectively.
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2.2. Spatial grouping of structural MRI
Structural imaging based on magnetic resonance provides information regarding the integrity

of gray and white matter structures in the brain, making it an integral part of the clinical assess-
ment of patients with dementia, such as AD and FTD. Automated classification approaches ap-
plied on structural MRI data have shown promise for the diagnosis of AD and the identification
of whole-brain patterns of disease specific atrophy. In this type of scenario, when dimensionality
reduction is performed prior to a supervised machine learning task, such as patient classification,
it is appealing to adopt a supervised clustering approach. The goal is to exploit prior information
(i.e., disease diagnosis) in order to generate regions of interest that are adapted not only to the
data, but also to the machine learning task, with the aim to improve its performance.

This supervised approach was adopted by the COMPARE method [21] that aims to perform
classification of morphological patterns using adaptive regional elements. COMPARE extracts
spatially smooth clusters that can be used to train a classifier to predict patient diagnosis by com-
bining information stemming from both the imaging signal and the subjects’ diagnosis. The two
types of information are integrated at each image location p in a multiplicative fashion though
the score s(p) = P(p)C(p), where C(p) measures the spatial consistency of the imaging sig-
nal, while P(p) measures discriminative power. More precisely, P is calculated as the following
leave-one-out absolute Pearson correlation:

P(p) = argmini=1..n|ρ(p, i)|,

Figure 1: Coronal and sagittal cross-sectional views of a
watershed segmentation generated by COMPARE.

where ρ(p, i) denotes the Pearson correlation
measured between the imaging signal at p and
the classification labels when excluding the i-
th subject/sample. The consistency C(p) is
the intra-class coefficient measuring the propor-
tion of neighboring features variance that is ex-
plained by the inter-subject variability [21, 22].
It takes values between 0 and 1, with higher
values indicating that the variance of the mea-
surements across neighboring brain location is
small with respect to the inter-subject variabil-
ity of the imaging signal. As a result, the score
s(p) is bounded between 0 and 1, with values close to 1 indicating that the imaging signal around
p is simultaneously highly reliable and discriminative (i.e., highly correlated or anti-correlated
with patient diagnosis).

This score map is subsequently smoothed, and its gradient is used in conjunction with a wa-
tershed segmentation algorithm [23] to partition the brain into different regions (Fig. 1 presents
brain regions generated by watershed form white matter tissue density maps of demented and nor-
mally aging subjects [21, 24]). These regions are then refined by considering only locations that
optimize the classification power of the extracted features. This is performed in a region grow-
ing fashion where initially only the node of the region with the highest discriminative score is
selected and adjacent locations are incrementally aggregated as long as the discriminative power
does not decrease. This approach extracts a single connected component per watershed region.
Each component comprises highly discriminative elements whose average imaging signal may
be used as feature for training a classifier such as a Support Vector Machine [25].

The efficiency of this supervised dimensionality reduction scheme was demonstrated in clas-
sifying demented and normal patients as well as distinguishing between schizophrenic patients
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and normal controls [21]. The previous supervised technique is generic and can be straightfor-
wardly extended to incorporate different forms of prior information such as the ones provided in
regression and multi-class classification settings.

2.2.1. Spatial grouping of rs-fMRI
Functional MRI is an imaging technique that tracks neural activity in the whole brain by

detecting changes in oxygen consumption. Resting-state fMRI describes a large part of the brain
networks [26] by evaluating regional interactions that occur when the subjects are relaxed and do
not perform a particular mental task during the brain scan. The dynamic nature of this imaging
modality results in extremely voluminous and complex datasets, underlining the need for efficient
dimensionality reduction.

Clustering approaches have received considerable attention towards reducing the dimension-
ality of functional data. This due to that fact that clustering is not only an efficient way to reduce
the spatial dimension of rs-fMRI data, but also a biologically meaningful one. Clustering sheds
light to the mid-scale functional structure of the brain that is considered to follow a segregation
and integration principle. In other words, information is thought to be processed by compact
groups of neurons in the brain, or functional units, that collaborate together towards addressing
complex tasks [27].

Clustering approaches typically aim to divide the brain into spatially smooth regions that are
likely to correspond to the functional units that constitute the brain. This is usually performed by
first representing the brain in the form of a graph, where nodes represent brain regions and edges
connect nodes that correspond to spatially adjacent locations. The weight of the edges represents
the strength of the connectivity between nodes and is estimated by computing the similarity be-
tween the rs-fMRI signals that are measured at each node. The similarity is commonly measured
by the Pearson correlation or the partial correlation [28]. Once the node is constructed, adjacent
brain locations that are strongly connected are grouped together in the same parcel.

Figure 2: Functional parcellation of the left
hemisphere of the brain, projected on an in-
flated brain surface.

Numerous methods have been proposed for this task.
Among the most popular methods, one may cite hierar-
chical clustering [29], normalized clustering [30, 31], k-
means [32], region growing [33, 34] and Markov Ran-
dom Fields (MRFs) [35–37]. Different methods exhibit
distinct advantages and disadvantages. Generally, many
of the above methods are either initialization dependent
(e.g., region growing [33, 34] and k-means [32]), or rely
on complex models that involve a large number of param-
eters [36]. As a result, they are sensitive to initialization
and suffer from limitations related to the employed heuris-
tics (e.g., hierarchical clustering may lead to the apparition
of bad parcels at coarse scale [29, 37]) and the large num-
ber of inferred parameters that may negatively impact the
quality of the locally optimal solution that is obtained [36]. Moreover, not all methods produce
contiguous parcels.

In order to address the aforementioned concerns, a discrete MRF approach, termed GraSP,
was recently introduced in [37]. This approach adopts an exemplar-based clustering approach
that allows for the reduction of the number of parameters by representing the rs-fMRI time se-
ries of each parcel by the signal of one of the nodes that are assigned to it. Thus, the clustering
framework is simplified thought the encoding of the parcels with their functional center. Only
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one parameter need to be chosen by the user; the label cost K that corresponds to the cost of
introducing a new parcel into the clustering result, and thus indirectly determines the size of the
produced parcels [38]. Contrary to other MRF clustering methods [35], these parcels are con-
nected (Fig. 2 presents a functional parcellation that was produced for reducing the dimension of
rs-fMRI scans from a neurodevelopmental study [20]). Parcel connectedness is promoted with-
out any spatial smoothing by the inclusion of a shape prior term into the MRF energy formulation
[39, 40]. Lastly, the energy is optimized in a single step, thus removing the need for initialization
and specifying a stopping criterion.

The MRF energy is summarized in the following form:

min∑
p

Vp(lp)+Lp({lp})+Sp({lp}),

where p denotes a node of the brain graph, lp the parcel that should contain this node, Vp(lp) is
a cost that decreases when the node p is a assigned to a parcel lp with highly correlated rs-fMRI
signal, Lp({lp}) penalizes by a positive cost K the introduction of a parcel of functional center
p, and the Sp({lp}) are the shape priors that enforce the connectedness of each parcel p. This
energy is optimized by exploiting advanced solvers [38] that could provide a substantial advance
over existing methods. Experimental results on large datasets demonstrated that this approach is
capable of generating parcels that are all highly coherent, while the overall parcellation is slightly
more reproducible than the result produced by hierarchical clustering and normalized cuts [37].

2.3. Statistically driven dimensionality reduction
The second family of dimensionality reduction methods is based on exploiting statistical

procedures to project the data is a space of lower dimension. This is typically performed within a
regularized matrix factorization framework where a tall matrix X comprising N samples/images
of dimension D, each one arrayed per column

(
X = [x1, . . . ,xN ] ,xi ∈ RD

)
, is approximated by a

product of matrices (X≈ BC). B is a matrix of the basis vectors that span the estimated subspace
and C contains the loading coefficients that provide the low dimensional description of the data.
Depending on the implemented modeling assumptions, B and C exhibit different properties.

Among the most widely used methods of this class, one may cite Principal Component Anal-
ysis (PCA) [41–43] and Independent Component Analysis (ICA). PCA maps the data to a lower
dimensional space through an orthogonal linear transformation, while preserving the variance of
the data. The transformation is performed in such a way that the basis vector (or principal com-
ponents) are ordered in descending order according to the amount of the variance they explain.
ICA [44–46], on the other hand, maps the data into a set of components that are as statistically
independent from each other as possible.

Despite their widespread use in neuroimaging, conventional factorization methods that are
used for dimensionality reduction suffer from limitations related to the interpretability and the
reproducibility of the derived representation. For example, both PCA and ICA estimate com-
ponents and coefficients of mixed sign, thus approximating the data through complex mutual
cancellation between component regions of opposite sign. This complex modeling of the data
along with the fact that the estimated components highly overlap due to their often global spatial
support results in representations that lack specificity. In other words, while it is possible to inter-
pret individual components, it is difficult to associate a specific brain region to a specific effect.
Lastly, conventional factorization methods, and especially PCA, aim to approximate the data as
faithfully as possible, thus capturing both relevant and irrelevant sources of variation, resulting
in poor generalization in unseen data sets.
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Next, we summarize our group’s work to derive efficient, interpretable and reproducible sta-
tistically driven dimensionality reduction techniques for structural and functional MRI data. The
key idea behind the developed frameworks is to derive highly parsimonious representations. The
reason behind this choice is threefold: i) sparse methods achieve a higher degree of specificity
than conventional multivariate analysis methods [47]; ii) they show improved generalizability
[48], while iii) sparsity is an important property for effective tools in brain modeling and anal-
ysis [49]. Sparsity is introduced in a tailored way, taking into account the specific properties of
different imaging modalities.

2.3.1. Statistically driven dimensionality reduction of structural MRI
Structural MRI scans typically encode the physical properties of the image tissue through the

use of non-negative values. This fact allows us to derive parsimonious representations through
the use of Non-Negative Matrix Factorization (NNMF) [47, 50]. Non-Negative Matrix Factor-
ization was proposed as an analytical and interpretive tool in structural neuroimaging in [50].

Non-Negative Matrix Factorization produces a factorization that constrains the elements of
both the components and the loading coefficients matrix to be non-negative. This is achieved by
minimizing the following energy:

minimize
B,C

||XXX−BC||2F subject to B≥ 0, C≥ 0,

where B = [b1, . . . ,bK ], bi ∈ RD and C = [c1, . . . ,cN ],ci ∈ RK . The non-negativity constraints
lead to a sparse, parts-based representation [47]. NNMF minimizes the reconstruction error
by aggregating variance through positively weighting variables of the data matrix that tend to
co-vary across the population. This provides a useful way of reducing the dimensionality of
structural data. The structural data of each individual is approximated through an additive com-
bination of the estimated components. In general, the estimated components identify regions that
co-vary across individuals in a consistent way, thus forming patterns of structural co-variance
that may potentially be parts of underlying networks or influenced by common mechanisms. The
loading coefficients matrix summarize the integrity of each pattern of structural co-variance in
each individual with a scalar value. These values provide an efficient and interpretable represen-
tation and can be used for comparing the integrity of structural networks across individuals.

This method was applied in a cohort of normal aging adults and was compared against PCA
and ICA in [50]. It was shown to derive representations that are more parsimonious and coherent
than the ones estimated by PCA and ICA. Moreover, the derived representation was quanti-
tatively shown to be more relevant to age-related phenomena, while allowing for accurate age
prediction as demonstrated through cross-validated age regression experiments. NNMF captured
less of the variance in the data than PCA and ICA, resulting in higher reconstruction error. How-
ever, the high prediction accuracy suggests that the discarded information is not pertinent, leading
to the conclusion that NNMF is able to retain important information, while discarding irrelevant
variations, which may potentially lead to increased generalizability. Indeed, split-sample exper-
iments demonstrated that the non-negative components are more reproducible than the principal
component ones.

Typical components estimated by NNMF are shown in Fig. 3. Note that the representation
amounts to a soft clustering that segments the brain to structurally coherent units in a data driven
way by exploiting group statistics. The derived components are characterized by high spatial
connectedness even though spatial smoothness was not explicitly enforced in the design of the
method. Another important characteristic of the obtained representation is the symmetry of the
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estimated components. This symmetry is completely data-driven and it breaks when not sup-
ported by the group statistics. Lastly, and most importantly, the estimated components are not
solely statistical construct, but highly correspond to known structural and functional networks of
the brain, or in some cases reflect underlying pathological processes.

Figure 3: Characteristic components estimated by NNMF. Different visualization strategies were used in order to en-
hance the visual perception of the components (note that the 2D images use radiographic convention). Warmer colors
correspond to higher values. Note the alignment with anatomical regions: 1) prefrontal cortex; 2) superior frontal
cortex; 3) superior lateral cortex; 4) left occipital lobe; 5) right occipital lobe; 6) inferior anterior temporal; 7) motor
cortex; 8) thalamus and putamen; 9) head of caudate; 10) peri-ventricular structures; 11) amygdala and hippocampus;
12) fusiform; 13) medial parietal including precuneus; 14) anterior and middle cingulate. The figure is reprinted from
[50].
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2.3.2. Statistically driven dimensionality reduction of functional MRI
Resting-state functional MRI is typically used to analyze regional interactions, aiming to

reveal brain’s functional organization. Resting state functional connectivity aims to reveal func-
tional networks that can be found consistently in healthy populations by examining the con-
nectivity between all pairs of regions in the brain. The Pearson correlation is typically use to
measure the connectivity between different brain regions due to its simplicity and robustness
[28, 51]. The resulting functional connectivity data tends to be high dimensional and of mixed
sign. The high dimensionality of the data makes subsequent group-wise analysis and interpre-
tation of results difficult, underlining the need for an efficient and interpretable dimensionality
reduction framework. However, the mixed sign nature of the data does not allow the applica-
tion of the previously described non-negative framework. Instead, sparsity needs to be explicitly
model through the inclusion of sparsity-inducing priors in the objective function of the matrix
factorization framework.

A sparsity based matrix factorization approach was proposed for functional connectivity data
in [52]. In this approach, each subject specific correlation matrix ΣΣΣn is approximated by a non-
negative sum of sparse rank one matrices bkbT

k . These sparse rank one matrices can be interpreted
as functionally coherent subsets of brain regions, or sparse patterns of connectivity (SCPs), which
occur in many of the subjects. A non-negative, subject-specific combination of SCPs, denoted
by the set of coefficients cn, approximates the input correlation matrix ΣΣΣn:

minimize
B,C

N

∑
n=1

∣∣∣∣ΣΣΣn−B diag(cn) BT ∣∣∣∣2
F

subject to
||bk||1 ≤ λ , k = 1, . . . ,K,

−1≤ bk(i)≤ 1, max
i
|bk(i)|= 1, i = 1, . . . ,P

cn ≥ 0, n = 1, . . . ,N

where B = [b1,b2, . . . ,bK ]. Sparse Connectivity Patterns (SCPs) provide a useful manner of
reducing the dimensionality of the connectivity data, while summarizing the connectivity within
each SCP in each individual with a scalar SCP coefficient value. These values can be used for
comparing functional connectivity across individuals.

Applied to a normative sample of young adults, the resulting SCPs were shown to be repro-
ducible across datasets, while explaining more of the variance in the second-order connectivity
data when compared to Spatial and Temporal ICA [53, 54]. This method can also be applied
within a hierarchical framework, where each “primary” SCP with a large spatial extent can be
split up into multiple smaller “secondary” SCPs, providing greater spatial specificity. Figure
4 shows a large primary SCP with contributions from the operculum and anti-correlated with
parts of the Default Mode. Its associated secondary SCPs, which represent a much smaller set
of regions, are shown around it. Note the high specificity of the representation that is due to the
sparsity of the derived networks.
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Figure 4: Primary SCP (middle) showing the cingulum, operculum (red-yellow) and anti-correlated with the default
mode (blue-light blue). Sixteen of its associated secondary SCPs are shown around it.

3. Model Interpretation: From Classification to Statistical Significance maps

Given an appropriate set of features, machine learning algorithms are employed to ana-
lyze neuroimaging data. This is typically performed by treating machine learning algorithms
as “black-boxes” that are to able to integrate patterns of disease-induced morphological signals
into subject specific indices. Even though these indices carry significant prognostic and diagnos-
tic value, this usage paradigm does not fully exploit the potential of machine learning methods.
In order to fully harness this potential, it is important to be able interpret the learned model in
terms of identifying brain regions that significantly contribute to the construction of the discrim-
inative pattern. This could significantly improve our understanding of the disease mechanisms
that selectively influence specific brain systems, while at the same time, making the automated
system transparent to human expert driven verification.
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(a)

(b)

Figure 5: The concept of imaging-based diagnosis using SVMs: (a) Images are treated as points located in a high-
dimensional space; (b) The maximum margin principle of classification used in SVMs. Dots and crosses represent
imaging scans taken from two groups. Even though the two groups can not be separated on the basis of values along any
single dimension, the combination of two dimensions gives perfect separation. This corresponds to the situation where a
single anatomical region may not provide the necessary discriminative power between groups, whereas the multivariate
SVM can still find the relevant hyperplane.
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In this section, we present such a framework for Support Vector Machines (SVMs) [25, 55].
Support vector machines enjoy significant popularity in neuroimaging [2, 11, 21, 56–58], mainly
due to their simplicity and the fact that the resulting problem is convex, allowing for efficient and
globally optimal solutions. The support vector machine operates by constructing a hyperplane in
a high dimensional space that separates samples from two classes (e.g., disease group vs. healthy
controls) by the largest possible margin (see Fig. 5 for an illustration of the principle). The
hyperplane coefficients denoted by w∗ and b∗ are estimated by solving the following optimization
problem:

{w∗,b∗}= min
w,b

1
2
||w||2 +C

m

∑
i=1

ξi

such that yi(wT xi +b)≥ 1−ξi ∀i = 1, . . . ,N
ξi ≥ 0 ∀i = 1, . . . ,N

where xi ∈ RD denotes the vectorized image of the i-th subject of the study, yi ∈ {+1,−1}
denotes its respective binary label and ξi denotes the slack variable that accounts for the case
that the classes are not separable. The weight vector w∗ ∈ RD describes the combination of all
imaging elements that best discriminates between the two classes.

It is tempting to use the weight image w∗ to interpret the model by assigning more importance
to elements that have higher weights. However, this is problematic [59] and does not readily yield
to a well understood p-value based statistical paradigm. One way to derive such a paradigm on
the basis of SVM theory is to use permutation testing (see Fig. 6 for an illustration of the
process). This is typically performed by generating a large number of shuffled instances of data
labels by random permutations. Each shuffled instance is subsequently used for training one
SVM, generating a new hyperplane parameterized by a vector w. Thus, for every element of
w, there is a set of possible values, each one corresponding to a specific shuffling of the labels.
Collecting these values allows for the construction of the corresponding empirically obtained null
distribution. Finally, comparing each component of w∗ with the corresponding null distribution
allows for the estimating of statistical significance. The number of permutations determines
the minimal obtainable p-value as well as the resolution of the p-value. Increasing the number
of permutations to a high number that will allow for the estimation of low p-values requires
training a high number of support vector classifiers, which in terms requires a considerable of
computational time and resources. Thus, a framework that would allow the analytic computation
of the p-values in a computationally economic fashion would be of significant value.
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Figure 6: Illustration of the permutation testing procedure. This figure is reprinted from [56].

Such a theoretical framework that describes an analytic alternative to permutation testing
was introduced in [56, 60]. This analytical framework makes use of a certain set of simplifying
assumptions that can be applied to the SVM formulations in high dimensional spaces to derive
an approximate null distribution, obviating the need for performing actual permutation testing.
The first assumption regards the high-dimension, low-sample size setting that is typically en-
countered in medical imaging. In such a setting, it is always possible to find hyperplanes that
can separate any possible labeling of points/samples. Thus, when using linear SVMs, for any
permutation of the labeling, one can always find a separating hyperplane that perfectly sepa-
rates the training data. This allows us to use the hard margin SVM formulation. The second
assumption regards the observation that for most permutations, most data are support vectors.
Taken together, these assumptions indicate that, for most permutations, it is possible to solve the
following optimization problem:

min
w,b

1
2
||w||2 such that Xw+Jb = y,

where J is is a column matrix of ones and X is a tall matrix with each row representing one
image. Solving for w yields

w = XT
[(

XXT )−1
+
(
XXT )−1 J

(
−JT (XXT )−1 J

)−1
JT (XXT )−1

]
︸ ︷︷ ︸

=C

y.

Note that each element w j of w is expressed as a linear combination of elements of y. Thus, it is
possible to hypothesize about the probability distribution of the elements of w given the distribu-
tions of yi. If yi attains any of the labels with equal probability, then E(yi) = 0 and Var(yi) = 1,
which in turns lead to E(w j) = 0 and Var(w j) = ∑

N
i=1 C2

i j. At this point, there is an analytical
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method to approximate the mean and the variance of the null distributions of components w− j
of w. By taking advantage of Lyapunov central limit theorem, it was demonstrated in [56, 60]
that the distribution of the individual components of w can be approximated using the normal
distribution for sufficiently large number of subjects. Thus, w∗j computed by an SVM model us-
ing true labels can now simply be compared to the previous distribution and statistical inference
can be made. The accuracy of this approximation is shown in Fig. 7. Note that the analytic and
experimental p-maps are visually indistinguishable, while the scatter plot shows a good corre-
spondence between the experimental and analytical p-values. Figure 8 shows an interpretative
statistical atlas obtained using [60] from a model that was used to classify Alzheimer’s disease
patients from controls. Note that the hippocampal complex along with parahippocampal regions
and amygdala are clearly highlighted.

Figure 7: (Top left) Analytic and experimental p-value maps thresholded at 0.01 are overlaid on the template brain. (Top
right) A scatter plot of p-values comparing experimental and analytical p-values. (Bottom) A 3D rendering representing
the predicted and experimental p-value maps. This figure is reprinted from [56].
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Figure 8: 3D Views of the hippocampal and parahippocampal regions used by the SVM (α ≤ 0.01 FDR corrected).

4. Heterogeneity

(a) Problem setting (b) CHIMERA

(c) HYDRA (d) Mixture of Experts

Figure 9: Heterogeneity problem setting and different methods.

A common assumption behind automated group analysis methods applied in neuroimaging
is that there is a single pattern that distinguishes the two contrasted groups. In other words, most
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approaches assume a single pathophysiological process that converts healthy controls to patients,
and aim to reveal it through monistic analysis. However, this approach ignores ample evidence
regarding the heterogeneous nature of diseases. For example, Autism [61, 62], Schizophrenia
[63–65], Parkinson [66, 67], Alzheimer’s Disease [68, 69] or Mild Cognitive Impairment (MCI)
[70, 71] are all characterized by clinical heterogeneity (see Fig. 9a for a graphical illustration of
the problem).

Disentangling disease heterogeneity may greatly contribute to our understanding and lead
to more accurate diagnosis, prognosis and targeted treatment. We present here, three recently
proposed methods to tackle disease heterogeneity under different methodological assumptions.
The first method is based on a generative clustering framework; the second adopts a purely
discriminative approach, while the third combines discrimination and clustering.

4.1. Generative Framework
The first method treats subjects as points in a high dimensional feature space, where both the

patient and the normal control group may be viewed as point distributions. In such a setting, the
disease heterogeneity could be addressed by partitioning the patient distribution with a cluster-
ing method. However, directly clustering the patients would be driven by the distances between
individuals, which would result in clustering the largest factor of data variability instead of the
disease effect. In order to address this challenge, the generative approach proposed in [72] con-
siders the disease effect to be a transformation from the normal control distribution to the patient
distribution (see Fig. 9b for a graphical illustration).

As a consequence, the patient distribution can be generated by transforming the normal con-
trol distribution with the assumption that if points of the patients had been spared from the dis-
ease, they would be covered by the normal control distribution. Heterogeneous disease effects are
modeled by considering multiple distinct transformations. These transformations can be found
by solving for a distribution matching of the true patient and generated patient distributions. The
distribution matching takes into account both imaging and covariate features (known variables,
such as age, sex and height). In this way, the clustering of patient distribution is regularized by
the structure of the normal control distribution.

More formally, let us assume that there are M normal control subjects X = {x1, ...,xM} and
N patient subjects Y = {y1, ...,yN}. They are described by two sets of features: a set of D1-
dimensional imaging features: xv

m,y
v
n ∈ RD1 ; and a set of D2-dimensional covariate features:

xc
m,y

c
n ∈ RD2 . For simplicity, subjects are denoted in compact vector forms: xm = (xv

m,x
c
m), yn =

(yv
n,y

c
n). The clustering model minimizes the following energy E :

E (X,Y,Θ) =−L (X,Y,Θ)+R(Θ),

where Θ denotes the parameters of the model, such as that transformations that are applied to X
in order to generate Y; L is the log-likelihood of the distributions X and Y given the parameters;
and R is a regularization term aiming to improve the stability of the clustering results.

The distribution transformation is denoted as T, which is a convex combination of K linear
transformations, each one corresponding to a different disease effect. T maps the imaging feature
xm of a normal control sample to the patient distribution, while keeping its covariate feature
unchanged: T(xm) = (∑K

k=1 ζkm(Akxv
m + bk),xc

m). The distribution matching is conducted as a
variant of the coherent point drift algorithm [73]. Each transformed normal control point is
considered as a centroid of a spherical Gaussian cluster, and patient points are treated as i.i.d. data
generated by a Gaussian Mixture Model (GMM) with equal weights for each cluster. The data
likelihood of this mixture model is optimized during the distribution matching, where covariate

16



features are embedded in the distance between points with a multi-kernel setting. These model
assumptions lead to the log-likelihood term L to be:

L (X,Y,Θ) =
N

∑
n=1

log
M

∑
m=1

1
M

rD2/2

(
√

2πσ)D1+D2
exp

{
‖yv

n−∑
K
k=1 ζkm(Akxv

m +bk)‖2 + r‖yc
n− xc

m‖2

−2σ2

}

The Frobenius norm of Ak− I and the `2 norm of bk are to be regularized, where I is an identity
matrix. This regularization, is equivalent to posing Gaussian priors for the parameters.

R(Θ) =
λ1

2σ2 ∑
k
‖bk‖2

2 +
λ2

2σ2 ∑
k
‖Ak− I‖2

F

Energy objective E is optimized with an Expectation-Maximization[74] approach. The hetero-
geneous disease subgroups of patients are further clustered by the estimated transformations.

This method was applied to an Alzheimer’s Disease Dataset1 comprising 390 T1 structural
MRI scans with 177 AD patients and 213 normal controls. Multi-Atlas ROI volumes were gener-
ated and used as imaging features, while age and sex information was used as covariate features.
With the cross-validated parameters, two subgroups were discovered. Voxel-Based Morphom-
etry (VBM) [75] was employed to examine the differences between the estimated subgroups
and the control population. The VBM results obtained from gray matter group comparisons are
shown in Fig. 10. Subgroup 1 has more gray matter atrophy in limbic lobe and frontal insular
regions, and exhibits unique deep gray matter atrophy in basal ganglia. Subgroup 2 exhibits
unique parietal and occipital gray matter atrophy on both lateral and medial structures.

Figure 10: VBM performed on gray matter RAVENS [76] maps between (1) Subgroup 1 and Control group; (2) Sub-
group 2 and Control group. The results were thresholded by FDR adjusted p-value at level of 0.01 are presented, overlaid
on the registration template image. Color-maps indicate the scale of the t-statistic. Warmer colors indicate volume loss,
while colder colors indicate volume increase.

4.2. Discriminative Framework

The second method takes a purely discriminative approach. It is based upon the observa-
tion that in high dimensional spaces, the modeling capacity of linear SVMs is theoretically rich
enough to discriminate between two homogeneous classes. However, while two classes may be
linearly separable with high probability, the resulting margin could be small. This case arises for
example when one class is generated by a multimodal distribution that models a heterogeneous
process. This may be remedied by the use of non-linear classifiers, allowing for larger margins

1http://adni.loni.usc.edu/
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and thus, better generalization. However, while kernel methods, such as Gaussian kernel SVM,
provide non-linearity, they lack interpretability when aiming to characterize heterogeneity.

In order to tackle the aforementioned limitations, a novel maximum margin non-linear learn-
ing algorithm for simultaneous binary classification and subtype identification, termed HYDRA
(Heterogeneity through Discriminative Analysis) was introduced in [77, 78]. HYDRA aims to
tackle disease subtype discovery in a principled machine learning framework. Neuroanatomical
or genetic subtypes are effectively captured by multiple linear hyperplanes, which form a convex
polytope that separates two groups ( e.g., healthy controls from pathologic samples); each face
of this polytope effectively defines a disease subtype (see Fig. 9c for a graphical illustration).

More formally, let us assume an imaging (or genetic) dataset consisting of n binary labeled
d-dimensional data points (D = (xi,yi)

n
i=1,xi ∈ Rd and yi ∈ {−1,1}). The maximum margin

polytope that separates the assumed heterogenous patients from the controls can be solved by
optimizing the following objective:

min
{w j ,b j}Kj=1

{si, j}
n−,K
i, j

K

∑
j=1

‖w j‖2
2

2
+C ∑

i|yi=+1
j

1
K

max{0,1−wT
j xi−b j}+C ∑

i|yi=−1
j

si, j max{0,1+wT
j xi +b j}

The first term encourages maximum average margin across all K faces the convex polytope clas-
sifier. The second term forces the control samples to be confined inside the polytope with slack.
Lastly, the third term enforces the patient samples to lie outside the assigned face of the polytope
with slack. The assignment of patient samples to the faces of polytope is handled by the indicator
variable si, j, which can be estimated by solving a linear program. The objective is optimized by
following a two step procedure that iterates between assigning samples to faces of the polytope,
and solving for hyperplanes that maximize the overall margin. This is similar in spirit to unsu-
pervised clustering methods, such as K-means, where centroids and assignments are iteratively
solved.

This approach was applied to a genetic dataset comprising 53 Alzheimer’s disease (AD) pa-
tients and 68 cognitively normal (CN) older adults (see demographic information in Table 1),
obtained from the ADNI study2. ADNI genotyping is performed using the Human610-Quad
Bead-Chip (Illumina, Inc., San Diego, CA), which results in a set of 620,901 single nucleotide
polymorphisms (SNPs) and copy number variation markers. Due to the weak or spurious signal
in most of the genome, the features were pruned and only SNP loci that were found to be associ-
ated with AD in a recent large scale genome wide association study [79] were kept. This resulted
in a reduced set of 18 SNPs that were represented by using two binary variables that encode the
presence of major-major or major-minor alleles, thus raising the total number of features to 36.

In order to estimate the optimal number of clusters, a reproducibility analysis was performed.
The reproducibility of the clustering was evaluated at K = 1, . . . ,9 by using the Adjusted Rand
Index [80]. This analysis suggested that two clusters were appropriate for capturing the intrinsic
dimensionality of the genetic heterogeneity associated with AD. The optimal genotype clus-
tering is visualized by contrasting the imaging phenotypes of the estimated subgroups against
the healthy control population through morphometric analysis using RAVENS (see Fig. 11A
and 11B). Correction for multiple comparisons was performed using FDR. The results were
thresholded at q < 0.05. It can be observed that at the K = 2 cluster level (see Fig. 11), the

2http://adni.loni.usc.edu/data-samples/genetic-data/
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Genetic heterogeneity in Alzheimer’s Disease
AD vs. CN (n = 121) AD subgroups (n = 53)

CN (n = 68) AD (n = 53) p-valueb Group 1 (n = 34) Group 2 (n = 19) p-valuec

Age (years) 76.08 ± 4.672 76.08 ± 7.188 0.9944 75.27 ± 5.981 77.43 ± 8.872 0.3184
Sex (female), n (%) 33 ( 50 ) 25 ( 52.08 ) 0.828 15 ( 50 ) 10 ( 55.56 ) 0.7163
MMSE 28.44 ± 2.367 19.06 ± 5.05 1.228e-24 18.77 ± 5.71 19.56 ± 3.807 0.6057
Apoε-4 genotypea, n (%) 20 ( 30.3 ) 31 ( 64.58 ) 0.0002108 29 ( 96.67 ) 2 ( 11.11 ) 1.901e-15

Table 1: Demographic and clinical characteristics of healthy controls, AD patients (left) and the estimated genetic-driven
subtypes of AD (right). a – Denotes subjects with at least one Apoε-4 allele present. b – p-value estimated using two-
tailed t-test to compare AD with CN. c – p-value estimated using analysis of variance (ANOVA) to compare the two
estimated AD subgroups.

estimated subgroups were associated with distinct patterns of structural brain alterations. The
first subgroup had increased temporal lobe atrophy (see Fig. 11A), including focal atrophy in the
hippocampus and entorhinal cortex as well as increased white matter lesion load. The second
subgroup was characterized by diffuse temporal lobe atrophy (see Fig. 11B), including periven-
tricular white matter lesions.

Figure 11: The anatomic differences between the two genetic subtypes of AD: Axial views of gray matter group com-
parisons of (A) Controls vs. first AD subgroup; (B) Controls vs. second AD subgroup; and (C) first AD subgroup vs.
second AD subgroup are visualized. For (A) and (B), colder colors indicate relative GM volume increases (CN < AD
subgroups), while warmer colors correspond to relative GM volume decreases (CN > AD subgroups). Similarly for
(C), colder colors indicate relative GM volume increases (first AD subgroup < second AD subgroup), while warmer
colors correspond to relative GM volume decreases (first AD subgroup > second AD subgroup). Both groups exhibit
atrophy in the temporal lobe and posterior medial cortex, while white matter lesions are present in the periventricular
area. However, the first AD subgroup, which mainly comprises Apo-ε4 carriers, is characterized by significantly more
hippocampal and entorhinal cortex atrophy.

In summary, HYDRA seamlessly integrates clustering and discrimination in a coherent frame-
work by solving a piecewise linear classifier that bears common geometric properties with convex
polytopes. Discrimination is achieved by constraining one class in the interior of the polytope,
while at the same time maximizing the margin between examples and class boundary. On the
other hand, clustering is performed by associating disease samples to different faces of the poly-
tope, and hence to different disease processes. Thus, each face of the polytope informs us about
the distinct foci of disease effects that distinguish the patients from the healthy control subjects.
This coupling between clustering and classification allows for segregating patients based on dis-
ease effects rather than global anatomy.
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4.3. Generative Discriminative Framework

The last approach that aims to identify heterogeneous sub-groups in patient populations is
based upon a Mixture-of-Experts (MOE) framework. The MOE framework was initially pro-
posed for vowel discrimination within speech recognition [81] and later on, as a fast and efficient
alternative to “kernel” SVMs [82, 83]. While kernel SVMs can successfully model non-linear
separation boundaries between groups, they suffer from a major limitation in neuroimaging ap-
plications, namely the lack of interpretability of the results. In a kernel-based method, the data is
projected into a higher dimensional space prior to being classified and the non-linear separating
boundary in the original feature space is not explicitly computed.

The presented joint generative-discriminative approach tackles this shortcoming by combin-
ing a generative clustering model with a discriminative classification/regression model [84]. Us-
ing this combination of unsupervised clustering (mixture) with supervised classification/regression
(expert), it approximates the non-linear boundary that separates the two classes with a piece-wise
linear separating boundary, providing us the identification of the sub-groups as well as the mul-
tivariate patterns that discriminate each sub-group from the reference group (see Fig. 9d for a
graphical illustration). The data is modeled using a mixture of distributions, such as Fuzzy C-
Means, which assigns a soft sub-group membership to each subject in the affected group. The
linear boundary between each affected sub-group and the reference group can be found using a
linear classifier, such as a linear SVM.

This is a general framework that can be applied to any dataset, using any appropriate mixture
model and expert classifier. Using a combination of fuzzy c-means and l2-loss linear SVMs, the
authors in [84] found heterogeneity in the manner in which normal older individuals age in terms
of functional connectivity. Of the two sub-groups that were found within the older individuals
(relative to a reference group of younger individuals), the authors found that one set of individuals
had increased functional connectivity between the bilateral frontal and insula regions. Upon
further investigation, the same set of individuals were found to have specific cognitive abilities
(executive function and visual processing) comparable to that of the younger group, while the
rest had worse cognition than the younger group, as expected due to aging. It is possible that the
increased bilateral connectivity in the subset of older people acts as a compensatory mechanism,
resulting in better cognitive performance for their age.

These results produced using MOE have significant clinical implications in terms of identi-
fying functional bio-markers of resilient aging, which is a very active topic of research in brain
aging. These results provide important biological clues to the wide variation in cognitive perfor-
mance that is normally seen in older individuals.

20



Figure 12: Plot showing primary SCP 6, and its associated secondary SCP 67, whose average connectivity is increased in
the second older subgroup, but not the first. SCP 6 highlights most of the pre-frontal cortex. SCP 67 captures the bilateral
para-cingulate gyrus and inferior temporal gyrus. The distribution fit of the underlying SCP coefficient histograms are
also shown, for each SCP and for each subgroup. Significance levels are indicated as follows: ’***’ for p-value < 0.001,
’**’ for p-value < 0.01 and ’*’ for p-value < 0.05. The figure is reprinted from [84].

5. Applications

5.1. Individualized diagnostic indices using MRI

The past 20 years have seen a wide acceptance of pattern analysis methods in neuroimaging,
as a means for capturing spatial patterns of morphological, functional and pathologic signals.
However the vast majority of methods investigating disease effects on the brain have relied on
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voxel-based analysis (VBA) methods, which apply mass-univariate tests on a voxel-by-voxel ba-
sis in an attempt to elucidate the spatial patterns of imaging differences between patients and
healthy controls. During the past decade, the use of machine learning to integrate and synthesize
these patterns into indices of diagnostic and predictive value on an individual person basis has
gained a great deal of attention, due to its significance beyond understanding disease effects and
into deriving individualized clinical indices of disease. Such machine learning-derived indices
have been used in several diseases, including AD[1, 2] and schizophrenia [15]. We now summa-
rize our groups work on deriving the SPARE-AD index, an index that measures the presence of
AD-like patterns of brain atrophy from brain MRI.

5.2. MRI-based diagnosis of AD: the SPARE-AD
In [13], the COMPARE algorithm was used on 122 MRI scans of cognitively normal (CN)

older adults and AD patients, and the SPARE-AD index was derived: positive values reflect
the presence of AD-like patterns of brain atrophy, and negative values indicate CN-like brain
anatomy. The patterns used by the COMPARE algorithm to build the SPARE-AD score were
fairly complex and distributed over several brain regions of gray matter (GM), white matter
(WM) and cerebrospinal fluid (CSF). Fig 15 indicates the regions with the most significant brain
atrophy and ventricular expansion.

Figure 13: From left to right, group comparison results on GM, WM, and CSF are shown. The color-maps indicate the
scale for the t-statistic. Images are displayed in radiological convention. Images reprinted with permission from [13].

The histograms of the (cross-validated) SPARE-AD scores achieved in this classification are
shown in Fig. 15, indicating excellent discrimination between CN individuals and AD patients.
The SPARE-AD index is therefore an index that offers promise as a clinical score derived from
sMRI and measuring the presence of AD patterns of brain atrophy.

5.3. Individualized early predictions
As individualized diagnostic indices, like the SPARE-AD, are developed based on machine

learning approaches, it is perhaps of greater interest to evaluate the predictive value of these in-
dices at early disease stages or even pre-clinically. These are the stages where standard clinical
evaluations might be less effective and hence likely to benefit from imaging-based biomarkers.
Along this vein, the SPARE-AD index was examined in individuals with mild cognitive im-
pairment in [14, 85], and it was found to have predict to a large extent an individuals future
progression to dementia. Fig. 15 shows survival curves obtained from baseline measures in 432
MCI patients of the ADNI1 study.
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Figure 14: Histograms of SPARE-AD scores obtained via cross validation from the ADNI1 sample from CN and AD
individuals.

Figure 16: Annual rates of SPARE-AD change at the BLSA longitudinal study. People who remained stable are shown
on the left, and people who converted to MCI are shown on the right displaying markedly higher rates of SPARE-AD
change prior to cognitive decline.

Figure 15: Survival curves showing predictive value of
MRI-derived patterns of atrophy that were evaluated using
machine learning (the SPARE-AD index).

Looking at even earlier stages of the pro-
gression of patterns of brain atrophy evaluated
via machine learning, the study in [86] inves-
tigated the predictive value of SPARE-AD in
preclinical stages of cognitively normal ag-
ing. It was found that patterns of brain change
at those stages are quite predictive of future
cognitive decline. Fig. 16 shows the rates of
SPARE-AD change for people who remained
cognitively stable (left), and for people who
progressed to MCI over an 8-year period;
since conversion from MCI to AD also takes
additional time (conversion rate is about 15%
annually), these studies indicate that patterns
of brain atrophy captured by these machine
learning approaches can evolve a decade or
longer before dementia. The availability of such an early time window can prove critical for the
success of future treatments.
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6. Conclusion

In summary, machine learning approaches offer great promise in clinical research as a means
for integrating complex imaging data into personalized indices of diagnostic and prognostic
value. As imaging (and genomic) data becomes increasingly complex and multi-faceted, such
approaches promise to help reduce otherwise unmanageable data volumes down to relatively few
clinically-informed indices. One of the challenges faced ahead is the need to prove the general-
ization of these approaches in large samples of data obtained across different studies/scanners/sites.
This can be a particularly challenging, in part due to the very ability of these methods to find sub-
tle patterns. If these patterns become too specific to one type of data, then they might be less
likely to generalize well across different clinics. Good imaging harmonization across clinics is
essential, as is the need to regularize and cross-test machine learning methods sufficiently, to
avoid data overfitting.
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