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ABSTRACT

Image registration is in principle a symmetric problem. Nonetheless,
most intensity-based non-rigid algorithms are asymmetric. In this
paper, we propose a novel symmetric deformable registration algo-
rithm formulated in a Markov Random Fields framework where both
images are let to deform towards a common domain that lies halfway
between two image domains. A grid-based deformation model is
employed and the latent variables correspond to the displacements of
the grid-nodes towards both image domains. First-order interactions
between the unknown variables model standard smoothness priors.
Efficient linear programming is consider to recover the optimal so-
lution. The discrete nature of our algorithm allows the handling of
both mono- and multi-modal registration problems. Promising ex-
perimental results demonstrate the potentials of our approach.

Index Terms— Symmetry, MRF, discrete optimization, de-
formable registration

1. INTRODUCTION

Deformable image registration defined as the establishment of dense
correspondences between two images is an important tool in medi-
cal image analysis. One can cite a number of important applications
of deformable registration: i) multi-modality fusion, where com-
plementary information stemming from different imaging devices is
fused to facilitate diagnosis and treatment planning; ii) longitudinal
studies, where the evolution of a disease is studied; and iii) popula-
tion modeling, where one studies the normal anatomical variability
of a structure of interest.

Deformable image registration is in principle a symmetric prob-
lem. Nonetheless, most methods that aim to tackle it are asymmetric.
That is, when swapping the order of the input images, the obtained
transformation is not the inverse of the one obtained before the swap.
Asymmetry in registration is not only unintuitive but also undesir-
able as it introduces bias in the process.

Asymmetry was first studied in the context of inverse consistent
methods [1]. These methods penalize the difference between the
inverse of the forward transformation and the backward one. The
drawback of this framework is that is only asymptotically symmetric
when the weight of the penalty is too great. Moreover, it is based
upon the estimation of the inverse of a transformation that is not
necessarily invertible.

Another way to endow registration with the symmetric property
is by evaluating the objective function in both image domains [2, 3].
This strategy results in an increased computational burden. More ef-
ficient approaches are the ones that consider inverse-invariant objec-
tive functions to symmetrize the problem. Such a direction was first
taken in [4] while more recently a more extensive analysis was given
in [5]. These methods by letting only one image deform towards the

other may suffer from asymmetry due to numerical implementation
issues.

The last approach one may consider consists in warping both im-
ages simultaneously towards a common domain [6, 7]. When con-
sidering a different flow for each image, the dimensionality of the
solution space for the previous methods is twice the one for standard
asymmetric approaches. Trying to limit the number of parameters, a
number of methods have considered only one flow for both images
[8, 9, 10].

Previous works are based upon continuous optimization meth-
ods. As a consequence, they are not modular with respect to the
objective criterion and depend greatly on the initial conditions. To-
wards overcoming these shortcomings, methods based on discrete
optimization methods have been proposed [11].

In this work, we present a novel symmetric registration method
that is formulated as a Markov Random Field (MRF) permitting the
use of discrete optimization techniques. Our approach enjoys mod-
ularity with respect to objective function and efficiency. In the pro-
posed approach, both images are deformed towards a common do-
main that is enforced to be at the same distance (in an Euclidean
sense) from the image domains similar to [8, 10].

2. METHODS

Let us consider two images, a source image S : ΩS 7→ R and a target
one T : ΩT 7→ R, where ΩS and ΩT denote respectively the source
and the target image domain. We aim at computing two deformation
fields, one from the common domain to the source image domain
TCS : ΩC 7→ ΩS and one from the common domain to the target
image domain TCT : ΩC 7→ ΩT . That way, the warping from
source domain to the target one can be calculated as TST = TCT ◦
T −1
CS . This implies an assumption for reasonable displacements or

else asymmetry may be introduced due to interpolation errors.
In order for the common domain to be equidistant from the two

image domains, the transformations TCS and TCT should satisfy the
following constraint:

TCS + TCT = 0 or TCS = −TCT . (1)

The previous equation implies that the number of parameters is equal
to the one of standard asymmetric registration. Moreover, to allow
the computation of the complete flow that maps from the one image
to the other, the deformation should be invertible. In the proposed
framework, the deformation is guaranteed to be diffeomorphic, that
is one-to-one and smooth.

2.1. Deformation Model

We consider a grid-based deformation model that can satisfy the re-
quirement for smooth and invertible transformations. The basic idea



of the deformation model consists in superimposing a grid G onto
the image to be deformed. The grid consists of k control points dis-
tributed uniformly along the image domain (k is smaller than the
dimensionality of the domain). The embedded image can then be
deformed by manipulating the grid control points.

The dense deformation field is given by assuming an interpola-
tion strategy:

T (x) = x +

k∑
i=1

ωi(x)di, (2)

where di denotes the displacement of the ith grid control point. In
our context, the weight ωi that determines the influence of the ith
grid control point is determined assuming a cubic B-spline interpo-
lation scheme. This choice is dictated by the existence of simple
hard constraints on the control point displacements to guarantee the
preservation of topology. Specifically, the maximum displacement
should not exceed 0.4 times the control point spacing [12].

Given that two transformations need to be estimated, two iso-
morphic deformation grids (GCS and GCT ) are employed. Taking
into consideration the deformation model, the constraint in Eq. 1 can
be expressed as:

di,CS = −di,CT . (3)

As the previous equation suggests, one parameter has to be estimated
for each node and depending on which deformation field is consid-
ered, its positive or negative value will be used.

2.2. Discrete Symmetric Registration

Mathematically, image registration is usually cast as an energy min-
imization problem. In a discrete setting, the problem is formulated
with the use of MRF. In the specific context, the solution space is
quantized and represented by a discrete set of plausible solutions or
labels L. The goal is to estimate the optimal label assignment by a
minimizing an energy of the following form:

EMRF =
∑
p∈V

Up (lp) +
∑
pq∈E

Ppq (lp, lq) (4)

Typically, such a model is represented by a graph G = (V, E),
where V denotes the set of vertices while E the edge system. In
this specific case, the graphical model has the same topology as the
deformation grids. The set of nodes corresponds to control point dis-
placements or a label assignment lp ∈ L is equivalent to displacing
the corresponding control point p in both GCS and GCT by dlp and
−dlp respectively

(
lp ≡ (lp,CS , lp,CT ) ≡

(
dlp ,−dlp

))
. The

neighborhood system follows a 6-connectivity scheme and models
the interaction between variables that correspond to neighboring de-
formation nodes.

The explicit control that we have over the creation of the label
set L enables us to impose explicitly desirable properties on the ob-
tained solution. That is, by sampling the solution space so that Eq. 1
is satisfied

(
lp ≡

(
dlp ,−dlp

))
, the common domain is constrained

to lie halfway between the two image domains. Moreover, by bound-
ing the maximum displacement that is sampled by 0.4 times the grid
spacing, the resulting deformation is guaranteed to be diffeomorphic.

The MRF energy (Eq. 4) is given as a summation of unary po-
tentials U and pairwise potentials P . The unary potentials are used
to model the data matching term while the pairwise potentials the
smoothness term that is necessary to account for the ill-posedness of

the registration problem as well as to introduce our prior knowledge
regarding the solution. Let us now define them.

The unary potentials are defined as:

Up(lp) =∫
ΩC

ω̂p(x) ρ(S ◦ TCS,lp,CS (x), T ◦ TCT,lp,CT (x)) dx, (5)

where TCS,lp,CS denotes the transformation when a control point
p ∈ GCS has been displaced by lp,CS . TCT,lp,CT is defined simi-
larly. ρ denotes any intensity-based dissimilarity criterion while ω̂i

is a weighting function similar to the one in Eq. 2. It determines
the influence or contribution of an image point x onto the (local)
matching term of individual control points. Only image points in the
vicinity of a control point are considered for the evaluation of the
dissimilarity measure with respect to the displacement of this partic-
ular control point. This is in line with the local support that a control
point has on the deformation.

The previous is valid when point-wise similarity criteria are con-
sidered. When an information theoretic criterion is to be used, a
different definition of ω̂i is adopted,

ω̂i(x) =

{
1, if ωi(x) ≥ 0,
0 otherwise.

(6)

Thus, in both cases the criterion is evaluated on a patch. The only
difference is that the patch is weighted in the first case. These lo-
cal evaluations enhance the robustness of the algorithm to local in-
tensity changes. Moreover, they allow for computationally efficient
schemes.

The random variables are assumed to be conditionally indepen-
dent. As a consequence, the unary potentials that constitute the
matching term can only be an approximation to the real matching
energy as the image deformation and thus the local similarity mea-
sure depends on more than one control point since their influence
areas do overlap. Still, the above approximation yields very accurate
registration. Furthermore, it allows an extremely efficient approxi-
mation scheme which can be easily adapted for parallel architectures
yielding extremely fast cost evaluations

The unary potentials can be seen as encoding an overlapping
blocks matching strategy. The evaluation of the unary potentials for
a label l ∈ L corresponding to the displacements dCS and dCT

can be efficiently performed as follows. First, each image is glob-
ally translated by applying the respective displacement. In the over-
lapping domain, the unary potentials for this label and for all con-
trol points are calculated simultaneously. This result in a one pass
through the common domain to calculate the cost and distribute the
local energies to the graph nodes. The constrained transformation
in the unary potentials is then simply defined as Tico,CS,lp,CS (x) =
Tico,CS(x) + lp,CS , where Tico,CS(x) is the current or initial esti-
mate of the transformation. From a computational point of view,
the extra load w.r.t the asymmetric registration is minimal and stems
from the fact that both images are transformed simultaneously. As a
result, the number of interpolation operations that are performed is
doubled. An insignificant cost to pay to symmetrize the registration
process.

The pairwise potentials penalize deviations of displacements of
neighboring control points in both deformation grids. The basic as-
sumption is that control points that are close should behave in a sim-
ilar way. Two different types of pairwise potentials may be defined
depending on the nature of the smoothness constraint we want to
model. Due to the nature of the displacements consider here, the



pairwise potentials are defined considering only the transformation
from the common domain to the source one.

If we consider an elastic-like regularization, an efficient discrete
approximation can be defined as

Pelastic,CS,pq(lp, lq) =
‖(dp,CS + lp,CS)− (dq,CS + lq,CS)‖

‖p− q‖ ,

(7)

where dp and dq denote the current displacements of the control
points p and q. If we remove the current displacements from the
previous definition, the fluid-like behavior can be obtained that pe-
nalizes only the difference between the incremental displacement of
the deformation field:

Pfluid,CS,pq(lp, lq) =
‖lp,CS − lq,CS‖
‖p− q‖ . (8)

In the fluid-like behavior case, all edges share the same pairwise
potential function resulting in low memory and computational de-
mands.

3. EXPERIMENTAL VALIDATION

To validate the performance of the proposed framework a 3D brain
MRI data set was used. The data set consists of 18 T1-weighted
brain volumes that have been positionally normalized into the Ta-
lairach orientation (rotation only). The MR brain data set along with
manual segmentations was provided by the Center for Morphome-
tric Analysis at Massachusetts General Hospital and are available
online1. The data set was rescaled and resampled so that all images
have a size equal to 256 × 256 × 128 and a physical resolution of
approximately 0.9375× 0.9375× 1.5000mm.

Our validation setting is constructed upon the comparison of
the proposed framework with the one proposed in [7]. The reason
behind our choice is threefold. First, the symmetric diffeomorphic
registration framework is considered state-of-the-art and has demon-
strated extensively its effectiveness in MRI Brain registration [13].
Second, the source code is publicly available2 allowing for a straight-
forward comparison. Third, it is based on a similar strategy to sym-
metrize the registration problem. Despite the fact that [7] has signif-
icantly more degrees of freedom, useful conclusions may be drawn
by the comparison of the two methods.

In our experiments, we used a multiresolution scheme in order
to harness the computational burden. A three-level image pyramid
was considered while a deformation grid of four different resolutions
was employed. The two finest grid resolutions operated on the finest
image resolution. The two coarsest operated on the respective coarse
image representations. The initial grid spacing was set to 40mm re-
sulting in a deformation grid of size 7 × 7 × 6. The size of the
gird was doubled at each finer resolution. A number of 90 labels, 30
along each principal axis, were used. The maximum displacement
indexed by a label was bounded to 0.4 times the grid spacing. Nor-
malized Cross Correlation was used as data cost while the fluid-like
regularization (Eq. 8) was preferred due to its low computational
and memory demands. The pairwise potentials were weighted by a
factor of 0.1. An efficient linear programming technique [14] was
employed to optimize the resulting energy.

Regarding [7], we used as similar parameters to ones used in the
evaluation study [13] as possible. The following command was used
to obtain the reported results:

1http://www.cma.mgh.harvard.edu/ibsr/data.html
2http://picsl.upenn.edu/ANTS/

ANTS 3 -m CC[<target>.nii, <source>.nii, 1, 5]
-o <output transform>.nii -r Gauss[2,0]
-t SyN[0.5] -i 30x99x11
-number-of-affine-iterations 1x1x1

Instead of using the probabilistic metric, the advised Cross Correla-
tion was used as it also facilitates the comparison between the two
methods. The minimum number of iterations for the available affine
registration step was used for fairness reasons.

To evaluate the performance of the algorithms, an image was se-
lected randomly as a template and all the rest were registered to it. In
order to assess visually the performance of both methods, the mean
intensity image of the deformed images on the target domain was
calculated and is depicted in the first row of Fig. 1. Both methods
produce sharp mean images that is a clear indication of good perfor-
mance. In the second row of Fig. 1 the used target image is shown
as well as a deformed image produced with each method. While our
proposed method has produced a good result, the one given by [7]
has recovered more details.

Furthermore, a quantitative analysis was performed based on the
manual segmentations of the gray (GM) and white matter (WM) that
are available in the data set. In Fig. 2 we report the boxplots of
the DICE criterion for the WM and GM classes. For the sake of
comparison, the values before registration are also provided. When
comparing with the baseline, one may conclude that both methods
have performed well. The high DICE values are an indication of
good performance. Clearly, [7] has performed slightly better than
the proposed method.

Fig. 2: Boxplots for the DICE criterion initially, with our method
and with [7]. On the left, the results for the WM. On the right, the
results for the GM.

To conclude this section, let us point out that the results reported
for our method were obtained in 10 min. On the contrary, in order to
obtain the results with [7] approximately 1 hour was necessary. We
firmly believe that the important difference in the computational ef-
ficiency between the two methods can outweigh the slight difference
in the quality of the solution in practice.

4. DISCUSSION

In this paper, we introduced a novel method for symmetric image
registration. The main contribution of the proposed approach lies



Fig. 1: In the first row, from left to right, the mean intensity image is depicted for the data set, after the proposed method and after [7]. In the
second row, from left to right, the target image is shown as well as a typical deformed image for the proposed method and [7]. For all cases,
the central slice is depicted.

in the Markov Random Field formulation of the problem. The con-
trol over the candidate solutions enabled us to introduce desirable
constraints on the obtained deformation fields. A major trait of the
proposed scheme is its extreme efficiency that is derived from both
the efficient linear programming optimization and our cost evalua-
tion strategy. We should underline that the registration framework
was endowed with the symmetric property at minimal extra compu-
tational cost. Last not least, we should note that our method is highly
parallelizable and thus a GPU implementation could further improve
its computational performance.
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